Browse Source

make calculation of F(X) in protogalaxy prover happen in O(n) (#52)

* make second step of the prover happen in O(n)

* readability fixes and error handling

* chore: Address review comments to merge

---------

Co-authored-by: CPerezz <c.perezbaro@gmail.com>
main
Silur 10 months ago
committed by GitHub
parent
commit
383a70de2f
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
2 changed files with 48 additions and 53 deletions
  1. +44
    -53
      src/folding/protogalaxy/folding.rs
  2. +4
    -0
      src/folding/protogalaxy/mod.rs

+ 44
- 53
src/folding/protogalaxy/folding.rs

@ -10,7 +10,6 @@ use ark_std::log2;
use ark_std::{cfg_into_iter, Zero};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use std::marker::PhantomData;
use std::ops::Add;
use super::traits::ProtoGalaxyTranscript;
use super::utils::{all_powers, betas_star, exponential_powers};
@ -92,13 +91,8 @@ where
let f_w = eval_f(r1cs, &w.w)?;
// F(X)
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
for (i, f_w_i) in f_w.iter().enumerate() {
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas)?;
let curr = &lhs * *f_w_i;
F_X = F_X.add(curr);
}
let F_X: SparsePolynomial<C::ScalarField> =
calc_f_from_btree(&f_w, &instance.betas, &deltas).expect("Error calculating F[x]");
let F_X_dense = DensePolynomial::from(F_X.clone());
transcript.absorb_vec(&F_X_dense.coeffs);
@ -310,34 +304,54 @@ fn pow_i(i: usize, betas: &Vec) -> F {
r
}
// Pending optimization: instead of this approach use Claim 4.4 from the paper.
fn pow_i_over_x<F: PrimeField>(
i: usize,
betas: &Vec<F>,
deltas: &Vec<F>,
/// calculates F[x] using the optimized binary-tree technique
/// described in Claim 4.4
/// of [Protogalaxy](https://eprint.iacr.org/2023/1106.pdf)
fn calc_f_from_btree<F: PrimeField>(
fw: &[F],
betas: &[F],
deltas: &[F],
) -> Result<SparsePolynomial<F>, Error> {
if betas.len() != deltas.len() {
return Err(Error::NotSameLength(
"betas.len()".to_string(),
betas.len(),
"deltas.len()".to_string(),
deltas.len(),
));
let fw_len = fw.len();
let betas_len = betas.len();
let deltas_len = deltas.len();
// ensure our binary tree is full
if !fw_len.is_power_of_two() {
return Err(Error::ProtoGalaxy(ProtoGalaxyError::BTreeNotFull(fw_len)));
}
let n = 2_u64.pow(betas.len() as u32);
let b = bit_decompose(i as u64, n as usize);
if betas_len != deltas_len {
return Err(Error::ProtoGalaxy(ProtoGalaxyError::WrongLenBetas(
betas_len, deltas_len,
)));
}
let mut r: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
for (j, beta_j) in betas.iter().enumerate() {
if b[j] {
let curr: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
r = r.mul(&curr);
let mut layers: Vec<Vec<SparsePolynomial<F>>> = Vec::new();
let leaves: Vec<SparsePolynomial<F>> = fw
.iter()
.copied()
.map(|e| SparsePolynomial::<F>::from_coefficients_slice(&[(0, e)]))
.collect();
layers.push(leaves.to_vec());
let mut currentNodes = leaves.clone();
while currentNodes.len() > 1 {
let index = layers.len();
layers.push(vec![]);
for (i, ni) in currentNodes.iter().enumerate().step_by(2) {
let left = ni.clone();
let right = SparsePolynomial::<F>::from_coefficients_vec(vec![
(0, betas[layers.len() - 2]),
(1, deltas[layers.len() - 2]),
])
.mul(&currentNodes[i + 1]);
layers[index].push(left + right);
}
currentNodes = layers[index].clone();
}
Ok(r)
let root_index = layers.len() - 1;
Ok(layers[root_index][0].clone())
}
// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
@ -413,29 +427,6 @@ mod tests {
}
}
#[test]
fn test_pow_i_over_x() {
let mut rng = ark_std::test_rng();
let t = 3;
let n = 8;
let beta = Fr::rand(&mut rng);
let delta = Fr::rand(&mut rng);
let betas = exponential_powers(beta, t);
let deltas = exponential_powers(delta, t);
// compute b + X*d, with X=rand
let x = Fr::rand(&mut rng);
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x)).unwrap();
// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
// vector [betas+X*deltas] and then computing pow_i over it
for i in 0..n {
let pow_i1 = pow_i_over_x(i, &betas, &deltas).unwrap();
let pow_i2 = pow_i(i, &bxd);
assert_eq!(pow_i1.evaluate(&x), pow_i2);
}
}
#[test]
fn test_eval_f() {
let r1cs = get_test_r1cs::<Fr>();

+ 4
- 0
src/folding/protogalaxy/mod.rs

@ -28,4 +28,8 @@ pub enum ProtoGalaxyError {
CouldNotDivideByVanishing,
#[error("The number of incoming instances + 1 should be a power of two, current number of instances: {0}")]
WrongNumInstances(usize),
#[error("The number of incoming items should be a power of two, current number of coefficients: {0}")]
BTreeNotFull(usize),
#[error("The lengths of β and δ do not equal: |β| = {0}, |δ|={0}")]
WrongLenBetas(usize, usize),
}

Loading…
Cancel
Save