mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-11 16:31:32 +01:00
together with the native impl compatible with the gadget one
This commit is contained in:
@@ -8,7 +8,7 @@ ark-ec = "0.4.2"
|
||||
ark-ff = "^0.4.0"
|
||||
ark-poly = "^0.4.0"
|
||||
ark-std = "^0.4.0"
|
||||
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = ["r1cs", "sponge"] }
|
||||
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = ["r1cs", "sponge", "crh"] }
|
||||
ark-relations = { version = "^0.4.0", default-features = false }
|
||||
ark-r1cs-std = { version = "^0.4.0", default-features = false }
|
||||
thiserror = "1.0"
|
||||
@@ -23,7 +23,6 @@ espresso_transcript = {git="https://github.com/EspressoSystems/hyperplonk", pack
|
||||
[dev-dependencies]
|
||||
ark-pallas = {version="0.4.0", features=["r1cs"]}
|
||||
ark-vesta = {version="0.4.0"}
|
||||
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = ["crh"] }
|
||||
|
||||
[features]
|
||||
default = ["parallel", "nova", "hypernova"]
|
||||
|
||||
@@ -3,6 +3,7 @@ use ark_ec::CurveGroup;
|
||||
use ark_ff::Field;
|
||||
|
||||
pub mod cyclefold;
|
||||
pub mod nonnative;
|
||||
|
||||
// CF represents the constraints field
|
||||
pub type CF<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
|
||||
|
||||
71
src/folding/circuits/nonnative.rs
Normal file
71
src/folding/circuits/nonnative.rs
Normal file
@@ -0,0 +1,71 @@
|
||||
use ark_ec::{AffineRepr, CurveGroup};
|
||||
use ark_ff::PrimeField;
|
||||
use ark_r1cs_std::fields::nonnative::{params::OptimizationType, AllocatedNonNativeFieldVar};
|
||||
use ark_r1cs_std::{
|
||||
alloc::{AllocVar, AllocationMode},
|
||||
fields::nonnative::NonNativeFieldVar,
|
||||
};
|
||||
use ark_relations::r1cs::{Namespace, SynthesisError};
|
||||
use core::borrow::Borrow;
|
||||
|
||||
/// NonNativeAffineVar represents an elliptic curve point in Affine represenation in the non-native
|
||||
/// field. It is not intended to perform operations, but just to contain the affine coordinates in
|
||||
/// order to perform hash operations of the point.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NonNativeAffineVar<F: PrimeField, CF: PrimeField> {
|
||||
pub x: NonNativeFieldVar<F, CF>,
|
||||
pub y: NonNativeFieldVar<F, CF>,
|
||||
}
|
||||
|
||||
impl<C> AllocVar<C, C::ScalarField> for NonNativeAffineVar<C::BaseField, C::ScalarField>
|
||||
where
|
||||
C: CurveGroup,
|
||||
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
||||
{
|
||||
fn new_variable<T: Borrow<C>>(
|
||||
cs: impl Into<Namespace<C::ScalarField>>,
|
||||
f: impl FnOnce() -> Result<T, SynthesisError>,
|
||||
mode: AllocationMode,
|
||||
) -> Result<Self, SynthesisError> {
|
||||
f().and_then(|val| {
|
||||
let cs = cs.into();
|
||||
|
||||
let affine = val.borrow().into_affine();
|
||||
let xy = affine.xy().unwrap();
|
||||
let x = NonNativeFieldVar::<C::BaseField, C::ScalarField>::new_variable(
|
||||
cs.clone(),
|
||||
|| Ok(xy.0),
|
||||
mode,
|
||||
)?;
|
||||
let y = NonNativeFieldVar::<C::BaseField, C::ScalarField>::new_variable(
|
||||
cs.clone(),
|
||||
|| Ok(xy.1),
|
||||
mode,
|
||||
)?;
|
||||
|
||||
Ok(Self { x, y })
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// point_to_nonnative_limbs is used to return (outside the circuit) the limbs representation that
|
||||
/// matches the one used in-circuit.
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub fn point_to_nonnative_limbs<C: CurveGroup>(
|
||||
p: C,
|
||||
) -> Result<(Vec<C::ScalarField>, Vec<C::ScalarField>), SynthesisError>
|
||||
where
|
||||
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
||||
{
|
||||
let affine = p.into_affine();
|
||||
let (x, y) = affine.xy().unwrap();
|
||||
let x = AllocatedNonNativeFieldVar::<C::BaseField, C::ScalarField>::get_limbs_representations(
|
||||
x,
|
||||
OptimizationType::Weight,
|
||||
)?;
|
||||
let y = AllocatedNonNativeFieldVar::<C::BaseField, C::ScalarField>::get_limbs_representations(
|
||||
y,
|
||||
OptimizationType::Weight,
|
||||
)?;
|
||||
Ok((x, y))
|
||||
}
|
||||
@@ -1,4 +1,9 @@
|
||||
use ark_ec::{AffineRepr, CurveGroup};
|
||||
use ark_crypto_primitives::crh::{
|
||||
poseidon::constraints::{CRHGadget, CRHParametersVar},
|
||||
CRHSchemeGadget,
|
||||
};
|
||||
use ark_crypto_primitives::sponge::Absorb;
|
||||
use ark_ec::{AffineRepr, CurveGroup, Group};
|
||||
use ark_ff::Field;
|
||||
use ark_r1cs_std::{
|
||||
alloc::{AllocVar, AllocationMode},
|
||||
@@ -7,30 +12,38 @@ use ark_r1cs_std::{
|
||||
fields::fp::FpVar,
|
||||
groups::GroupOpsBounds,
|
||||
prelude::CurveVar,
|
||||
ToConstraintFieldGadget,
|
||||
};
|
||||
use ark_relations::r1cs::{Namespace, SynthesisError};
|
||||
use core::{borrow::Borrow, marker::PhantomData};
|
||||
|
||||
use super::CommittedInstance;
|
||||
use crate::folding::circuits::cyclefold::ECRLC;
|
||||
use crate::folding::circuits::{cyclefold::ECRLC, nonnative::NonNativeAffineVar};
|
||||
|
||||
/// CF1 represents the ConstraintField used for the main Nova circuit which is over E1::Fr.
|
||||
/// CF1 represents the ConstraintField used for the main Nova circuit which is over E1::Fr, where
|
||||
/// E1 is the main curve where we do the folding.
|
||||
pub type CF1<C> = <<C as CurveGroup>::Affine as AffineRepr>::ScalarField;
|
||||
/// CF2 represents the ConstraintField used for the CycleFold circuit which is over E2::Fr=E1::Fq.
|
||||
/// CF2 represents the ConstraintField used for the CycleFold circuit which is over E2::Fr=E1::Fq,
|
||||
/// where E2 is the auxiliary curve (from [CycleFold](https://eprint.iacr.org/2023/1192.pdf)
|
||||
/// approach) where we check the folding of the commitments.
|
||||
pub type CF2<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
|
||||
|
||||
/// CommittedInstance on E1 contains the u and x values which are folded on the main Nova
|
||||
/// constraints field (E1::Fr).
|
||||
/// CommittedInstanceVar contains the u, x, cmE and cmW values which are folded on the main Nova
|
||||
/// constraints field (E1::Fr, where E1 is the main curve).
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct CommittedInstanceE1Var<C: CurveGroup> {
|
||||
pub struct CommittedInstanceVar<C: CurveGroup> {
|
||||
_c: PhantomData<C>,
|
||||
u: FpVar<C::ScalarField>,
|
||||
x: Vec<FpVar<C::ScalarField>>,
|
||||
#[allow(dead_code)] // tmp while we don't have the code of the AugmentedFGadget
|
||||
cmE: NonNativeAffineVar<CF2<C>, C::ScalarField>,
|
||||
cmW: NonNativeAffineVar<CF2<C>, C::ScalarField>,
|
||||
}
|
||||
|
||||
impl<C> AllocVar<CommittedInstance<C>, CF1<C>> for CommittedInstanceE1Var<C>
|
||||
impl<C> AllocVar<CommittedInstance<C>, CF1<C>> for CommittedInstanceVar<C>
|
||||
where
|
||||
C: CurveGroup,
|
||||
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
||||
{
|
||||
fn new_variable<T: Borrow<CommittedInstance<C>>>(
|
||||
cs: impl Into<Namespace<CF1<C>>>,
|
||||
@@ -42,20 +55,63 @@ where
|
||||
|
||||
let u = FpVar::<C::ScalarField>::new_variable(cs.clone(), || Ok(val.borrow().u), mode)?;
|
||||
let x: Vec<FpVar<C::ScalarField>> =
|
||||
Vec::new_variable(cs, || Ok(val.borrow().x.clone()), mode)?;
|
||||
Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
|
||||
|
||||
let cmE = NonNativeAffineVar::<CF2<C>, C::ScalarField>::new_variable(
|
||||
cs.clone(),
|
||||
|| Ok(val.borrow().cmE),
|
||||
mode,
|
||||
)?;
|
||||
let cmW = NonNativeAffineVar::<CF2<C>, C::ScalarField>::new_variable(
|
||||
cs.clone(),
|
||||
|| Ok(val.borrow().cmW),
|
||||
mode,
|
||||
)?;
|
||||
|
||||
Ok(Self {
|
||||
_c: PhantomData,
|
||||
u,
|
||||
x,
|
||||
cmE,
|
||||
cmW,
|
||||
})
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// CommittedInstance on E2 contains the commitments to E and W, which are folded on the auxiliary
|
||||
/// curve constraints field (E2::Fr = E1::Fq).
|
||||
pub struct CommittedInstanceE2Var<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
|
||||
impl<C> CommittedInstanceVar<C>
|
||||
where
|
||||
C: CurveGroup,
|
||||
<C as Group>::ScalarField: Absorb,
|
||||
{
|
||||
/// hash implements the committed instance hash compatible with the native implementation from
|
||||
/// CommittedInstance.hash.
|
||||
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U` is the
|
||||
/// `CommittedInstance`.
|
||||
#[allow(dead_code)] // tmp while we don't have the code of the AugmentedFGadget
|
||||
fn hash(
|
||||
self,
|
||||
crh_params: &CRHParametersVar<CF1<C>>,
|
||||
i: FpVar<CF1<C>>,
|
||||
z_0: FpVar<CF1<C>>,
|
||||
z_i: FpVar<CF1<C>>,
|
||||
) -> Result<FpVar<CF1<C>>, SynthesisError> {
|
||||
let input = vec![
|
||||
vec![i, z_0, z_i, self.u],
|
||||
self.x,
|
||||
self.cmE.x.to_constraint_field()?,
|
||||
self.cmE.y.to_constraint_field()?,
|
||||
self.cmW.x.to_constraint_field()?,
|
||||
self.cmW.y.to_constraint_field()?,
|
||||
]
|
||||
.concat();
|
||||
CRHGadget::<C::ScalarField>::evaluate(crh_params, &input)
|
||||
}
|
||||
}
|
||||
|
||||
/// CommittedInstanceCycleFoldVar represents the commitments to E and W from the CommittedInstance
|
||||
/// on the E2, which are folded on the auxiliary curve constraints field (E2::Fr = E1::Fq).
|
||||
pub struct CommittedInstanceCycleFoldVar<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
|
||||
where
|
||||
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
||||
{
|
||||
@@ -64,7 +120,7 @@ where
|
||||
cmW: GC,
|
||||
}
|
||||
|
||||
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CommittedInstanceE2Var<C, GC>
|
||||
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CommittedInstanceCycleFoldVar<C, GC>
|
||||
where
|
||||
C: CurveGroup,
|
||||
GC: CurveVar<C, CF2<C>>,
|
||||
@@ -105,9 +161,9 @@ where
|
||||
/// the CycleFold circuit.
|
||||
pub fn verify(
|
||||
r: FpVar<CF1<C>>,
|
||||
ci1: CommittedInstanceE1Var<C>,
|
||||
ci2: CommittedInstanceE1Var<C>,
|
||||
ci3: CommittedInstanceE1Var<C>,
|
||||
ci1: CommittedInstanceVar<C>,
|
||||
ci2: CommittedInstanceVar<C>,
|
||||
ci3: CommittedInstanceVar<C>,
|
||||
) -> Result<(), SynthesisError> {
|
||||
// ensure that: ci3.u == ci1.u + r * ci2.u
|
||||
ci3.u.enforce_equal(&(ci1.u + r.clone() * ci2.u))?;
|
||||
@@ -140,9 +196,9 @@ where
|
||||
pub fn verify(
|
||||
r_bits: Vec<Boolean<CF2<C>>>,
|
||||
cmT: GC,
|
||||
ci1: CommittedInstanceE2Var<C, GC>,
|
||||
ci2: CommittedInstanceE2Var<C, GC>,
|
||||
ci3: CommittedInstanceE2Var<C, GC>,
|
||||
ci1: CommittedInstanceCycleFoldVar<C, GC>,
|
||||
ci2: CommittedInstanceCycleFoldVar<C, GC>,
|
||||
ci3: CommittedInstanceCycleFoldVar<C, GC>,
|
||||
) -> Result<(), SynthesisError> {
|
||||
// cm(E) check: ci3.cmE == ci1.cmE + r * cmT + r^2 * ci2.cmE
|
||||
ci3.cmE.enforce_equal(
|
||||
@@ -183,16 +239,17 @@ mod tests {
|
||||
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
let ciVar =
|
||||
CommittedInstanceE1Var::<Projective>::new_witness(cs.clone(), || Ok(ci.clone()))
|
||||
.unwrap();
|
||||
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci.clone())).unwrap();
|
||||
assert_eq!(ciVar.u.value().unwrap(), ci.u);
|
||||
assert_eq!(ciVar.x.value().unwrap(), ci.x);
|
||||
|
||||
// check the instantiation of the CycleFold side:
|
||||
let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
let ciVar =
|
||||
CommittedInstanceE2Var::<Projective, GVar>::new_witness(cs.clone(), || Ok(ci.clone()))
|
||||
.unwrap();
|
||||
CommittedInstanceCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
||||
Ok(ci.clone())
|
||||
})
|
||||
.unwrap();
|
||||
assert_eq!(ciVar.cmE.value().unwrap(), ci.cmE);
|
||||
assert_eq!(ciVar.cmW.value().unwrap(), ci.cmW);
|
||||
}
|
||||
@@ -216,8 +273,8 @@ mod tests {
|
||||
let ci2 = w2.commit(&pedersen_params, x2.clone());
|
||||
|
||||
// get challenge from transcript
|
||||
let config = poseidon_test_config::<Fr>();
|
||||
let mut tr = PoseidonTranscript::<Projective>::new(&config);
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
let mut tr = PoseidonTranscript::<Projective>::new(&poseidon_config);
|
||||
let r_bits = tr.get_challenge_nbits(128);
|
||||
let r_Fr = Fr::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
|
||||
|
||||
@@ -228,13 +285,13 @@ mod tests {
|
||||
|
||||
let rVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(r_Fr)).unwrap();
|
||||
let ci1Var =
|
||||
CommittedInstanceE1Var::<Projective>::new_witness(cs.clone(), || Ok(ci1.clone()))
|
||||
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci1.clone()))
|
||||
.unwrap();
|
||||
let ci2Var =
|
||||
CommittedInstanceE1Var::<Projective>::new_witness(cs.clone(), || Ok(ci2.clone()))
|
||||
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci2.clone()))
|
||||
.unwrap();
|
||||
let ci3Var =
|
||||
CommittedInstanceE1Var::<Projective>::new_witness(cs.clone(), || Ok(ci3.clone()))
|
||||
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci3.clone()))
|
||||
.unwrap();
|
||||
|
||||
NIFSGadget::<Projective>::verify(
|
||||
@@ -253,21 +310,60 @@ mod tests {
|
||||
let r_bitsVar = Vec::<Boolean<Fq>>::new_witness(cs_CC.clone(), || Ok(r_bits)).unwrap();
|
||||
|
||||
let cmTVar = GVar::new_witness(cs_CC.clone(), || Ok(cmT)).unwrap();
|
||||
let ci1Var = CommittedInstanceE2Var::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci1.clone())
|
||||
})
|
||||
.unwrap();
|
||||
let ci2Var = CommittedInstanceE2Var::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci2.clone())
|
||||
})
|
||||
.unwrap();
|
||||
let ci3Var = CommittedInstanceE2Var::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci3.clone())
|
||||
})
|
||||
.unwrap();
|
||||
let ci1Var =
|
||||
CommittedInstanceCycleFoldVar::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci1.clone())
|
||||
})
|
||||
.unwrap();
|
||||
let ci2Var =
|
||||
CommittedInstanceCycleFoldVar::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci2.clone())
|
||||
})
|
||||
.unwrap();
|
||||
let ci3Var =
|
||||
CommittedInstanceCycleFoldVar::<Projective, GVar>::new_witness(cs_CC.clone(), || {
|
||||
Ok(ci3.clone())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
NIFSCycleFoldGadget::<Projective, GVar>::verify(r_bitsVar, cmTVar, ci1Var, ci2Var, ci3Var)
|
||||
.unwrap();
|
||||
assert!(cs_CC.is_satisfied().unwrap());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_committed_instance_hash() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
||||
let i = Fr::from(3_u32);
|
||||
let z_0 = Fr::from(3_u32);
|
||||
let z_i = Fr::from(3_u32);
|
||||
let ci = CommittedInstance::<Projective> {
|
||||
cmE: Projective::rand(&mut rng),
|
||||
u: Fr::rand(&mut rng),
|
||||
cmW: Projective::rand(&mut rng),
|
||||
x: vec![Fr::rand(&mut rng); 1],
|
||||
};
|
||||
|
||||
// compute the CommittedInstance hash natively
|
||||
let h = ci.hash(&poseidon_config, i, z_0, z_i).unwrap();
|
||||
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(i)).unwrap();
|
||||
let z_0Var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(z_0)).unwrap();
|
||||
let z_iVar = FpVar::<Fr>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let ciVar =
|
||||
CommittedInstanceVar::<Projective>::new_witness(cs.clone(), || Ok(ci.clone())).unwrap();
|
||||
|
||||
let crh_params = CRHParametersVar::<Fr>::new_constant(cs.clone(), poseidon_config).unwrap();
|
||||
|
||||
// compute the CommittedInstance hash in-circuit
|
||||
let hVar = ciVar.hash(&crh_params, iVar, z_0Var, z_iVar).unwrap();
|
||||
assert!(cs.is_satisfied().unwrap());
|
||||
|
||||
// check that the natively computed and in-circuit computed hashes match
|
||||
assert_eq!(hVar.value().unwrap(), h);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,15 @@
|
||||
/// Implements the scheme described in [Nova](https://eprint.iacr.org/2021/370.pdf)
|
||||
use ark_crypto_primitives::sponge::Absorb;
|
||||
use ark_crypto_primitives::{
|
||||
crh::{poseidon::CRH, CRHScheme},
|
||||
sponge::{poseidon::PoseidonConfig, Absorb},
|
||||
};
|
||||
use ark_ec::{CurveGroup, Group};
|
||||
use ark_std::fmt::Debug;
|
||||
use ark_std::{One, Zero};
|
||||
|
||||
use crate::folding::circuits::nonnative::point_to_nonnative_limbs;
|
||||
use crate::pedersen::{Params as PedersenParams, Pedersen};
|
||||
use crate::Error;
|
||||
|
||||
pub mod circuits;
|
||||
pub mod nifs;
|
||||
@@ -17,7 +22,11 @@ pub struct CommittedInstance<C: CurveGroup> {
|
||||
pub x: Vec<C::ScalarField>,
|
||||
}
|
||||
|
||||
impl<C: CurveGroup> CommittedInstance<C> {
|
||||
impl<C: CurveGroup> CommittedInstance<C>
|
||||
where
|
||||
<C as Group>::ScalarField: Absorb,
|
||||
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
||||
{
|
||||
pub fn empty() -> Self {
|
||||
CommittedInstance {
|
||||
cmE: C::zero(),
|
||||
@@ -26,6 +35,35 @@ impl<C: CurveGroup> CommittedInstance<C> {
|
||||
x: Vec::new(),
|
||||
}
|
||||
}
|
||||
|
||||
/// hash implements the committed instance hash compatible with the gadget implemented in
|
||||
/// nova/circuits.rs::CommittedInstanceVar.hash.
|
||||
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U` is the
|
||||
/// `CommittedInstance`.
|
||||
pub fn hash(
|
||||
&self,
|
||||
poseidon_config: &PoseidonConfig<C::ScalarField>,
|
||||
i: C::ScalarField,
|
||||
z_0: C::ScalarField,
|
||||
z_i: C::ScalarField,
|
||||
) -> Result<C::ScalarField, Error> {
|
||||
let (cmE_x, cmE_y) = point_to_nonnative_limbs::<C>(self.cmE)?;
|
||||
let (cmW_x, cmW_y) = point_to_nonnative_limbs::<C>(self.cmW)?;
|
||||
|
||||
Ok(CRH::<C::ScalarField>::evaluate(
|
||||
poseidon_config,
|
||||
vec![
|
||||
vec![i, z_0, z_i, self.u],
|
||||
self.x.clone(),
|
||||
cmE_x,
|
||||
cmE_y,
|
||||
cmW_x,
|
||||
cmW_y,
|
||||
]
|
||||
.concat(),
|
||||
)
|
||||
.unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
|
||||
Reference in New Issue
Block a user