mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-09 07:21:28 +01:00
A circuit for computing c, from section 5, step 5 of "A multi-folding scheme for CCS" (#61)
* feat: start hypernova nimfs verifier * refactor: change where nimfs verifier lives * feat: `EqEvalGadget` for computing `eq(x, y)` * refactor: rename to `utils.rs` * feat: implement a `VecFpVar` struct, representing a vector of `FpVar`s * refactor: extract a `sum_muls_gamma_pows_eq_sigma` function to make circuit tests easier * feat: implement a `SumMulsGammaPowEqSigmaGadget` to compute the first term of the sum of section 5, step 5 * refactor: update gadget name and method name to match `sum_muls_gamma_pows_eq_sigma` * fix: update method call * refactor: remove usage of `GammaVar` Co-authored-by: arnaucube <root@arnaucube.com> * refactor: move hypernova circuit related types and methods into `src/folding/hypernova/circuits.rs` * refactor: remove all of `GammaVar` wrapper * chore: update type to `&[F]` * refactor: update from `new_constant` to `new_witness` * fix: actual file deletion * refactor: remove `VecFpVar` struct * chore: update comment doc * refactor: extract a `sum_ci_mul_prod_thetaj` function for testing * feat: `test_sum_ci_mul_prod_thetaj_gadget` passing * refactor: update docs and add a helper `get_prepared_thetas` function * refactor: clearer arg name * fix: clippy typing * chore: correct latex comments * refactor: remove unncessary `get_prepared_thetas` fn * feat: test passing for rough first pass on `ComputeCFromSigmasAndThetasGadget` * chore: add additional doc comments * chore: add `#[allow(clippy::too_many_arguments)]` * refactor: make gadget generic over a curve group * chore: clippy fixes * chore: correct latex in doc comment * refactor: refactor `sum_muls_gamma_pows_eq_sigma` and `sum_ci_mul_prod_thetaj` in `ComputeCFromSigmasAndThetasGadget` --------- Co-authored-by: arnaucube <root@arnaucube.com>
This commit is contained in:
@@ -4,6 +4,7 @@ use ark_ff::Field;
|
||||
|
||||
pub mod nonnative;
|
||||
pub mod sum_check;
|
||||
pub mod utils;
|
||||
|
||||
// CF represents the constraints field
|
||||
pub type CF<C> = <<C as CurveGroup>::BaseField as Field>::BasePrimeField;
|
||||
|
||||
75
src/folding/circuits/utils.rs
Normal file
75
src/folding/circuits/utils.rs
Normal file
@@ -0,0 +1,75 @@
|
||||
use ark_ff::PrimeField;
|
||||
use ark_r1cs_std::fields::{fp::FpVar, FieldVar};
|
||||
use ark_relations::r1cs::SynthesisError;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// EqEval is a gadget for computing $\tilde{eq}(a, b) = \prod_{i=1}^{l}(a_i \cdot b_i + (1 - a_i)(1 - b_i))$
|
||||
/// :warning: This is not the ark_r1cs_std::eq::EqGadget
|
||||
pub struct EqEvalGadget<F: PrimeField> {
|
||||
_f: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F: PrimeField> EqEvalGadget<F> {
|
||||
/// Gadget to evaluate eq polynomial.
|
||||
/// Follows the implementation of `eq_eval` found in this crate.
|
||||
pub fn eq_eval(x: Vec<FpVar<F>>, y: Vec<FpVar<F>>) -> Result<FpVar<F>, SynthesisError> {
|
||||
if x.len() != y.len() {
|
||||
return Err(SynthesisError::Unsatisfiable);
|
||||
}
|
||||
if x.is_empty() || y.is_empty() {
|
||||
return Err(SynthesisError::AssignmentMissing);
|
||||
}
|
||||
let mut e = FpVar::<F>::one();
|
||||
for (xi, yi) in x.iter().zip(y.iter()) {
|
||||
let xi_yi = xi * yi;
|
||||
e *= xi_yi.clone() + xi_yi - xi - yi + F::one();
|
||||
}
|
||||
Ok(e)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
use crate::utils::virtual_polynomial::eq_eval;
|
||||
|
||||
use super::EqEvalGadget;
|
||||
use ark_ff::Field;
|
||||
use ark_pallas::Fr;
|
||||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
use ark_std::{test_rng, UniformRand};
|
||||
|
||||
#[test]
|
||||
pub fn test_eq_eval_gadget() {
|
||||
let mut rng = test_rng();
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
for i in 1..20 {
|
||||
let x_vec: Vec<Fr> = (0..i).map(|_| Fr::rand(&mut rng)).collect();
|
||||
let y_vec: Vec<Fr> = (0..i).map(|_| Fr::rand(&mut rng)).collect();
|
||||
let x: Vec<FpVar<Fr>> = x_vec
|
||||
.iter()
|
||||
.map(|x| FpVar::<Fr>::new_witness(cs.clone(), || Ok(x)).unwrap())
|
||||
.collect();
|
||||
let y: Vec<FpVar<Fr>> = y_vec
|
||||
.iter()
|
||||
.map(|y| FpVar::<Fr>::new_witness(cs.clone(), || Ok(y)).unwrap())
|
||||
.collect();
|
||||
let expected_eq_eval = eq_eval::<Fr>(&x_vec, &y_vec).unwrap();
|
||||
let gadget_eq_eval: FpVar<Fr> = EqEvalGadget::<Fr>::eq_eval(x, y).unwrap();
|
||||
assert_eq!(expected_eq_eval, gadget_eq_eval.value().unwrap());
|
||||
}
|
||||
|
||||
let x: Vec<FpVar<Fr>> = vec![];
|
||||
let y: Vec<FpVar<Fr>> = vec![];
|
||||
let gadget_eq_eval = EqEvalGadget::<Fr>::eq_eval(x, y);
|
||||
assert!(gadget_eq_eval.is_err());
|
||||
|
||||
let x: Vec<FpVar<Fr>> = vec![];
|
||||
let y: Vec<FpVar<Fr>> =
|
||||
vec![FpVar::<Fr>::new_witness(cs.clone(), || Ok(&Fr::ONE)).unwrap()];
|
||||
let gadget_eq_eval = EqEvalGadget::<Fr>::eq_eval(x, y);
|
||||
assert!(gadget_eq_eval.is_err());
|
||||
}
|
||||
}
|
||||
318
src/folding/hypernova/circuit.rs
Normal file
318
src/folding/hypernova/circuit.rs
Normal file
@@ -0,0 +1,318 @@
|
||||
// hypernova nimfs verifier circuit
|
||||
// see section 5 in https://eprint.iacr.org/2023/573.pdf
|
||||
|
||||
use crate::{ccs::CCS, folding::circuits::utils::EqEvalGadget};
|
||||
use ark_ec::CurveGroup;
|
||||
use ark_r1cs_std::{
|
||||
alloc::AllocVar,
|
||||
fields::{fp::FpVar, FieldVar},
|
||||
ToBitsGadget,
|
||||
};
|
||||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
use ark_std::Zero;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Gadget to compute $\sum_{j \in [t]} \gamma^{j} \cdot e_1 \cdot \sigma_j + \gamma^{t+1} \cdot e_2 \cdot \sum_{i=1}^{q} c_i * \prod_{j \in S_i} \theta_j$.
|
||||
/// This is the sum computed by the verifier and laid out in section 5, step 5 of "A multi-folding scheme for CCS".
|
||||
pub struct ComputeCFromSigmasAndThetasGadget<C: CurveGroup> {
|
||||
_c: PhantomData<C>,
|
||||
}
|
||||
|
||||
impl<C: CurveGroup> ComputeCFromSigmasAndThetasGadget<C> {
|
||||
/// Computes the sum $\sum_{j}^{j + n} \gamma^{j} \cdot eq_eval \cdot \sigma_{j}$, where $n$ is the length of the `sigmas` vector
|
||||
/// It corresponds to the first term of the sum that $\mathcal{V}$ has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
||||
///
|
||||
/// # Arguments
|
||||
/// - `sigmas`: vector of $\sigma_j$ values
|
||||
/// - `eq_eval`: the value of $\tilde{eq}(x_j, x^{\prime})$
|
||||
/// - `gamma`: value $\gamma$
|
||||
/// - `j`: the power at which we start to compute $\gamma^{j}$. This is needed in the context of multifolding.
|
||||
///
|
||||
/// # Notes
|
||||
/// In the context of multifolding, `j` corresponds to `ccs.t` in `compute_c_from_sigmas_and_thetas`
|
||||
fn sum_muls_gamma_pows_eq_sigma(
|
||||
gamma: FpVar<C::ScalarField>,
|
||||
eq_eval: FpVar<C::ScalarField>,
|
||||
sigmas: Vec<FpVar<C::ScalarField>>,
|
||||
j: FpVar<C::ScalarField>,
|
||||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
||||
let mut result = FpVar::<C::ScalarField>::zero();
|
||||
let mut gamma_pow = gamma.pow_le(&j.to_bits_le()?)?;
|
||||
for sigma in sigmas {
|
||||
result += gamma_pow.clone() * eq_eval.clone() * sigma;
|
||||
gamma_pow *= gamma.clone();
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
/// Computes $\sum_{i=1}^{q} c_i * \prod_{j \in S_i} theta_j$
|
||||
///
|
||||
/// # Arguments
|
||||
/// - `c_i`: vector of $c_i$ values
|
||||
/// - `thetas`: vector of pre-processed $\thetas[j]$ values corresponding to a particular `ccs.S[i]`
|
||||
///
|
||||
/// # Notes
|
||||
/// This is a part of the second term of the sum that $\mathcal{V}$ has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
||||
/// The first term is computed by `SumMulsGammaPowsEqSigmaGadget::sum_muls_gamma_pows_eq_sigma`.
|
||||
/// This is a doct product between a vector of c_i values and a vector of pre-processed $\theta_j$ values, where $j$ is a value from $S_i$.
|
||||
/// Hence, this requires some pre-processing of the $\theta_j$ values, before running this gadget.
|
||||
fn sum_ci_mul_prod_thetaj(
|
||||
c_i: Vec<FpVar<C::ScalarField>>,
|
||||
thetas: Vec<Vec<FpVar<C::ScalarField>>>,
|
||||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
||||
let mut result = FpVar::<C::ScalarField>::zero();
|
||||
for (i, c_i) in c_i.iter().enumerate() {
|
||||
let prod = &thetas[i].iter().fold(FpVar::one(), |acc, e| acc * e);
|
||||
result += c_i * prod;
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
|
||||
/// Computes the sum that the verifier has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
||||
///
|
||||
/// # Arguments
|
||||
/// - `cs`: constraint system
|
||||
/// - `ccs`: the CCS instance
|
||||
/// - `vec_sigmas`: vector of $\sigma_j$ values
|
||||
/// - `vec_thetas`: vector of $\theta_j$ values
|
||||
/// - `gamma`: value $\gamma$
|
||||
/// - `beta`: vector of $\beta_j$ values
|
||||
/// - `vec_r_x`: vector of $r_{x_j}$ values
|
||||
/// - `vec_r_x_prime`: vector of $r_{x_j}^{\prime}$ values
|
||||
///
|
||||
/// # Notes
|
||||
/// Arguments to this function are *almost* the same as the arguments to `compute_c_from_sigmas_and_thetas` in `utils.rs`.
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn compute_c_from_sigmas_and_thetas(
|
||||
cs: ConstraintSystemRef<C::ScalarField>,
|
||||
ccs: &CCS<C>,
|
||||
vec_sigmas: Vec<Vec<FpVar<C::ScalarField>>>,
|
||||
vec_thetas: Vec<Vec<FpVar<C::ScalarField>>>,
|
||||
gamma: FpVar<C::ScalarField>,
|
||||
beta: Vec<FpVar<C::ScalarField>>,
|
||||
vec_r_x: Vec<Vec<FpVar<C::ScalarField>>>,
|
||||
vec_r_x_prime: Vec<FpVar<C::ScalarField>>,
|
||||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
||||
let mut c =
|
||||
FpVar::<C::ScalarField>::new_witness(cs.clone(), || Ok(C::ScalarField::zero()))?;
|
||||
let t = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
||||
Ok(C::ScalarField::from(ccs.t as u64))
|
||||
})?;
|
||||
|
||||
let mut e_lcccs = Vec::new();
|
||||
for r_x in vec_r_x.iter() {
|
||||
let e_1 = EqEvalGadget::eq_eval(r_x.to_vec(), vec_r_x_prime.to_vec())?;
|
||||
e_lcccs.push(e_1);
|
||||
}
|
||||
|
||||
for (i, sigmas) in vec_sigmas.iter().enumerate() {
|
||||
let i_var = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
||||
Ok(C::ScalarField::from(i as u64))
|
||||
})?;
|
||||
let pow = i_var * t.clone();
|
||||
c += Self::sum_muls_gamma_pows_eq_sigma(
|
||||
gamma.clone(),
|
||||
e_lcccs[i].clone(),
|
||||
sigmas.to_vec(),
|
||||
pow,
|
||||
)?;
|
||||
}
|
||||
|
||||
let mu = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
||||
Ok(C::ScalarField::from(vec_sigmas.len() as u64))
|
||||
})?;
|
||||
let e_2 = EqEvalGadget::eq_eval(beta, vec_r_x_prime)?;
|
||||
for (k, thetas) in vec_thetas.iter().enumerate() {
|
||||
// get prepared thetas. only step different from original `compute_c_from_sigmas_and_thetas`
|
||||
let mut prepared_thetas = Vec::new();
|
||||
for i in 0..ccs.q {
|
||||
let prepared: Vec<FpVar<C::ScalarField>> =
|
||||
ccs.S[i].iter().map(|j| thetas[*j].clone()).collect();
|
||||
prepared_thetas.push(prepared.to_vec());
|
||||
}
|
||||
|
||||
let c_i = Vec::<FpVar<C::ScalarField>>::new_witness(cs.clone(), || Ok(ccs.c.clone()))
|
||||
.unwrap();
|
||||
let lhs = Self::sum_ci_mul_prod_thetaj(c_i.clone(), prepared_thetas.clone())?;
|
||||
|
||||
// compute gamma^(t+1)
|
||||
let pow = mu.clone() * t.clone()
|
||||
+ FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
||||
Ok(C::ScalarField::from(k as u64))
|
||||
})?;
|
||||
let gamma_t1 = gamma.pow_le(&pow.to_bits_le()?)?;
|
||||
|
||||
c += gamma_t1.clone() * e_2.clone() * lhs.clone();
|
||||
}
|
||||
|
||||
Ok(c)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::ComputeCFromSigmasAndThetasGadget;
|
||||
use crate::{
|
||||
ccs::{
|
||||
tests::{get_test_ccs, get_test_z},
|
||||
CCS,
|
||||
},
|
||||
folding::hypernova::utils::{
|
||||
compute_c_from_sigmas_and_thetas, compute_sigmas_and_thetas, sum_ci_mul_prod_thetaj,
|
||||
sum_muls_gamma_pows_eq_sigma,
|
||||
},
|
||||
pedersen::Pedersen,
|
||||
utils::virtual_polynomial::eq_eval,
|
||||
};
|
||||
use ark_pallas::{Fr, Projective};
|
||||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
use ark_std::{test_rng, UniformRand};
|
||||
|
||||
#[test]
|
||||
pub fn test_sum_muls_gamma_pow_eq_sigma_gadget() {
|
||||
let mut rng = test_rng();
|
||||
let ccs: CCS<Projective> = get_test_ccs();
|
||||
let z1 = get_test_z(3);
|
||||
let z2 = get_test_z(4);
|
||||
|
||||
let gamma: Fr = Fr::rand(&mut rng);
|
||||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
// Initialize a multifolding object
|
||||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
||||
|
||||
let mut e_lcccs = Vec::new();
|
||||
for r_x in &vec![lcccs_instance.r_x] {
|
||||
e_lcccs.push(eq_eval(r_x, &r_x_prime).unwrap());
|
||||
}
|
||||
|
||||
// Initialize cs and gamma
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
||||
|
||||
for (i, sigmas) in sigmas_thetas.0.iter().enumerate() {
|
||||
let expected =
|
||||
sum_muls_gamma_pows_eq_sigma(gamma, e_lcccs[i], sigmas, (i * ccs.t) as u64);
|
||||
let sigmas_var =
|
||||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap();
|
||||
let eq_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(e_lcccs[i])).unwrap();
|
||||
let pow =
|
||||
FpVar::<Fr>::new_witness(cs.clone(), || Ok(Fr::from((i * ccs.t) as u64))).unwrap();
|
||||
let computed =
|
||||
ComputeCFromSigmasAndThetasGadget::<Projective>::sum_muls_gamma_pows_eq_sigma(
|
||||
gamma_var.clone(),
|
||||
eq_var,
|
||||
sigmas_var,
|
||||
pow,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(expected, computed.value().unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_sum_ci_mul_prod_thetaj_gadget() {
|
||||
let mut rng = test_rng();
|
||||
let ccs: CCS<Projective> = get_test_ccs();
|
||||
let z1 = get_test_z(3);
|
||||
let z2 = get_test_z(4);
|
||||
|
||||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
// Initialize a multifolding object
|
||||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
||||
|
||||
let mut e_lcccs = Vec::new();
|
||||
for r_x in &vec![lcccs_instance.r_x] {
|
||||
e_lcccs.push(eq_eval(r_x, &r_x_prime).unwrap());
|
||||
}
|
||||
|
||||
// Initialize cs
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
let vec_thetas = sigmas_thetas.1;
|
||||
for (_, thetas) in vec_thetas.iter().enumerate() {
|
||||
// sum c_i * prod theta_j
|
||||
let expected = sum_ci_mul_prod_thetaj(&ccs, thetas); // from `compute_c_from_sigmas_and_thetas`
|
||||
let mut prepared_thetas = Vec::new();
|
||||
for i in 0..ccs.q {
|
||||
let prepared: Vec<Fr> = ccs.S[i].iter().map(|j| thetas[*j]).collect();
|
||||
prepared_thetas
|
||||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(prepared)).unwrap());
|
||||
}
|
||||
let computed = ComputeCFromSigmasAndThetasGadget::<Projective>::sum_ci_mul_prod_thetaj(
|
||||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(ccs.c.clone())).unwrap(),
|
||||
prepared_thetas,
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(expected, computed.value().unwrap());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
pub fn test_compute_c_from_sigmas_and_thetas_gadget() {
|
||||
let ccs: CCS<Projective> = get_test_ccs();
|
||||
let z1 = get_test_z(3);
|
||||
let z2 = get_test_z(4);
|
||||
|
||||
let mut rng = test_rng();
|
||||
let gamma: Fr = Fr::rand(&mut rng);
|
||||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
// Initialize a multifolding object
|
||||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
||||
|
||||
let expected_c = compute_c_from_sigmas_and_thetas(
|
||||
&ccs,
|
||||
&sigmas_thetas,
|
||||
gamma,
|
||||
&beta,
|
||||
&vec![lcccs_instance.r_x.clone()],
|
||||
&r_x_prime,
|
||||
);
|
||||
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
let mut vec_sigmas = Vec::new();
|
||||
let mut vec_thetas = Vec::new();
|
||||
for sigmas in sigmas_thetas.0 {
|
||||
vec_sigmas
|
||||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap());
|
||||
}
|
||||
for thetas in sigmas_thetas.1 {
|
||||
vec_thetas
|
||||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(thetas.clone())).unwrap());
|
||||
}
|
||||
let vec_r_x =
|
||||
vec![
|
||||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(lcccs_instance.r_x.clone()))
|
||||
.unwrap(),
|
||||
];
|
||||
let vec_r_x_prime =
|
||||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(r_x_prime.clone())).unwrap();
|
||||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
||||
let beta_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(beta.clone())).unwrap();
|
||||
let computed_c = ComputeCFromSigmasAndThetasGadget::compute_c_from_sigmas_and_thetas(
|
||||
cs,
|
||||
&ccs,
|
||||
vec_sigmas,
|
||||
vec_thetas,
|
||||
gamma_var,
|
||||
beta_var,
|
||||
vec_r_x,
|
||||
vec_r_x_prime,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(expected_c, computed_c.value().unwrap());
|
||||
}
|
||||
}
|
||||
@@ -1,5 +1,6 @@
|
||||
/// Implements the scheme described in [HyperNova](https://eprint.iacr.org/2023/573.pdf)
|
||||
pub mod cccs;
|
||||
pub mod circuit;
|
||||
pub mod lcccs;
|
||||
pub mod nimfs;
|
||||
pub mod utils;
|
||||
|
||||
@@ -86,6 +86,38 @@ pub fn compute_sigmas_and_thetas<C: CurveGroup>(
|
||||
SigmasThetas(sigmas, thetas)
|
||||
}
|
||||
|
||||
/// Computes the sum $\sum_{j = 0}^{n} \gamma^{\text{pow} + j} \cdot eq_eval \cdot \sigma_{j}$
|
||||
/// `pow` corresponds to `i * ccs.t` in `compute_c_from_sigmas_and_thetas`
|
||||
pub fn sum_muls_gamma_pows_eq_sigma<F: PrimeField>(
|
||||
gamma: F,
|
||||
eq_eval: F,
|
||||
sigmas: &[F],
|
||||
pow: u64,
|
||||
) -> F {
|
||||
let mut result = F::zero();
|
||||
for (j, sigma_j) in sigmas.iter().enumerate() {
|
||||
let gamma_j = gamma.pow([(pow + (j as u64))]);
|
||||
result += gamma_j * eq_eval * sigma_j;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
/// Computes $\sum_{i=1}^{q} c_i * \prod_{j \in S_i} theta_j$
|
||||
pub fn sum_ci_mul_prod_thetaj<C: CurveGroup>(
|
||||
ccs: &CCS<C>,
|
||||
thetas: &[C::ScalarField],
|
||||
) -> C::ScalarField {
|
||||
let mut result = C::ScalarField::zero();
|
||||
for i in 0..ccs.q {
|
||||
let mut prod = C::ScalarField::one();
|
||||
for j in ccs.S[i].clone() {
|
||||
prod *= thetas[j];
|
||||
}
|
||||
result += ccs.c[i] * prod;
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
/// Compute the right-hand-side of step 5 of the multifolding scheme
|
||||
pub fn compute_c_from_sigmas_and_thetas<C: CurveGroup>(
|
||||
ccs: &CCS<C>,
|
||||
@@ -104,24 +136,14 @@ pub fn compute_c_from_sigmas_and_thetas<C: CurveGroup>(
|
||||
}
|
||||
for (i, sigmas) in vec_sigmas.iter().enumerate() {
|
||||
// (sum gamma^j * e_i * sigma_j)
|
||||
for (j, sigma_j) in sigmas.iter().enumerate() {
|
||||
let gamma_j = gamma.pow([(i * ccs.t + j) as u64]);
|
||||
c += gamma_j * e_lcccs[i] * sigma_j;
|
||||
}
|
||||
c += sum_muls_gamma_pows_eq_sigma(gamma, e_lcccs[i], sigmas, (i * ccs.t) as u64);
|
||||
}
|
||||
|
||||
let mu = vec_sigmas.len();
|
||||
let e2 = eq_eval(beta, r_x_prime).unwrap();
|
||||
for (k, thetas) in vec_thetas.iter().enumerate() {
|
||||
// + gamma^{t+1} * e2 * sum c_i * prod theta_j
|
||||
let mut lhs = C::ScalarField::zero();
|
||||
for i in 0..ccs.q {
|
||||
let mut prod = C::ScalarField::one();
|
||||
for j in ccs.S[i].clone() {
|
||||
prod *= thetas[j];
|
||||
}
|
||||
lhs += ccs.c[i] * prod;
|
||||
}
|
||||
let lhs = sum_ci_mul_prod_thetaj(ccs, thetas);
|
||||
let gamma_t1 = gamma.pow([(mu * ccs.t + k) as u64]);
|
||||
c += gamma_t1 * e2 * lhs;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user