* feat: start hypernova nimfs verifier * refactor: change where nimfs verifier lives * feat: `EqEvalGadget` for computing `eq(x, y)` * refactor: rename to `utils.rs` * feat: implement a `VecFpVar` struct, representing a vector of `FpVar`s * refactor: extract a `sum_muls_gamma_pows_eq_sigma` function to make circuit tests easier * feat: implement a `SumMulsGammaPowEqSigmaGadget` to compute the first term of the sum of section 5, step 5 * refactor: update gadget name and method name to match `sum_muls_gamma_pows_eq_sigma` * fix: update method call * refactor: remove usage of `GammaVar` Co-authored-by: arnaucube <root@arnaucube.com> * refactor: move hypernova circuit related types and methods into `src/folding/hypernova/circuits.rs` * refactor: remove all of `GammaVar` wrapper * chore: update type to `&[F]` * refactor: update from `new_constant` to `new_witness` * fix: actual file deletion * refactor: remove `VecFpVar` struct * chore: update comment doc * refactor: extract a `sum_ci_mul_prod_thetaj` function for testing * feat: `test_sum_ci_mul_prod_thetaj_gadget` passing * refactor: update docs and add a helper `get_prepared_thetas` function * refactor: clearer arg name * fix: clippy typing * chore: correct latex comments * refactor: remove unncessary `get_prepared_thetas` fn * feat: test passing for rough first pass on `ComputeCFromSigmasAndThetasGadget` * chore: add additional doc comments * chore: add `#[allow(clippy::too_many_arguments)]` * refactor: make gadget generic over a curve group * chore: clippy fixes * chore: correct latex in doc comment * refactor: refactor `sum_muls_gamma_pows_eq_sigma` and `sum_ci_mul_prod_thetaj` in `ComputeCFromSigmasAndThetasGadget` --------- Co-authored-by: arnaucube <root@arnaucube.com>main
@ -0,0 +1,75 @@ |
|||
use ark_ff::PrimeField;
|
|||
use ark_r1cs_std::fields::{fp::FpVar, FieldVar};
|
|||
use ark_relations::r1cs::SynthesisError;
|
|||
use std::marker::PhantomData;
|
|||
|
|||
/// EqEval is a gadget for computing $\tilde{eq}(a, b) = \prod_{i=1}^{l}(a_i \cdot b_i + (1 - a_i)(1 - b_i))$
|
|||
/// :warning: This is not the ark_r1cs_std::eq::EqGadget
|
|||
pub struct EqEvalGadget<F: PrimeField> {
|
|||
_f: PhantomData<F>,
|
|||
}
|
|||
|
|||
impl<F: PrimeField> EqEvalGadget<F> {
|
|||
/// Gadget to evaluate eq polynomial.
|
|||
/// Follows the implementation of `eq_eval` found in this crate.
|
|||
pub fn eq_eval(x: Vec<FpVar<F>>, y: Vec<FpVar<F>>) -> Result<FpVar<F>, SynthesisError> {
|
|||
if x.len() != y.len() {
|
|||
return Err(SynthesisError::Unsatisfiable);
|
|||
}
|
|||
if x.is_empty() || y.is_empty() {
|
|||
return Err(SynthesisError::AssignmentMissing);
|
|||
}
|
|||
let mut e = FpVar::<F>::one();
|
|||
for (xi, yi) in x.iter().zip(y.iter()) {
|
|||
let xi_yi = xi * yi;
|
|||
e *= xi_yi.clone() + xi_yi - xi - yi + F::one();
|
|||
}
|
|||
Ok(e)
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
|
|||
use crate::utils::virtual_polynomial::eq_eval;
|
|||
|
|||
use super::EqEvalGadget;
|
|||
use ark_ff::Field;
|
|||
use ark_pallas::Fr;
|
|||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_std::{test_rng, UniformRand};
|
|||
|
|||
#[test]
|
|||
pub fn test_eq_eval_gadget() {
|
|||
let mut rng = test_rng();
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
|
|||
for i in 1..20 {
|
|||
let x_vec: Vec<Fr> = (0..i).map(|_| Fr::rand(&mut rng)).collect();
|
|||
let y_vec: Vec<Fr> = (0..i).map(|_| Fr::rand(&mut rng)).collect();
|
|||
let x: Vec<FpVar<Fr>> = x_vec
|
|||
.iter()
|
|||
.map(|x| FpVar::<Fr>::new_witness(cs.clone(), || Ok(x)).unwrap())
|
|||
.collect();
|
|||
let y: Vec<FpVar<Fr>> = y_vec
|
|||
.iter()
|
|||
.map(|y| FpVar::<Fr>::new_witness(cs.clone(), || Ok(y)).unwrap())
|
|||
.collect();
|
|||
let expected_eq_eval = eq_eval::<Fr>(&x_vec, &y_vec).unwrap();
|
|||
let gadget_eq_eval: FpVar<Fr> = EqEvalGadget::<Fr>::eq_eval(x, y).unwrap();
|
|||
assert_eq!(expected_eq_eval, gadget_eq_eval.value().unwrap());
|
|||
}
|
|||
|
|||
let x: Vec<FpVar<Fr>> = vec![];
|
|||
let y: Vec<FpVar<Fr>> = vec![];
|
|||
let gadget_eq_eval = EqEvalGadget::<Fr>::eq_eval(x, y);
|
|||
assert!(gadget_eq_eval.is_err());
|
|||
|
|||
let x: Vec<FpVar<Fr>> = vec![];
|
|||
let y: Vec<FpVar<Fr>> =
|
|||
vec![FpVar::<Fr>::new_witness(cs.clone(), || Ok(&Fr::ONE)).unwrap()];
|
|||
let gadget_eq_eval = EqEvalGadget::<Fr>::eq_eval(x, y);
|
|||
assert!(gadget_eq_eval.is_err());
|
|||
}
|
|||
}
|
@ -0,0 +1,318 @@ |
|||
// hypernova nimfs verifier circuit
|
|||
// see section 5 in https://eprint.iacr.org/2023/573.pdf
|
|||
|
|||
use crate::{ccs::CCS, folding::circuits::utils::EqEvalGadget};
|
|||
use ark_ec::CurveGroup;
|
|||
use ark_r1cs_std::{
|
|||
alloc::AllocVar,
|
|||
fields::{fp::FpVar, FieldVar},
|
|||
ToBitsGadget,
|
|||
};
|
|||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|||
use ark_std::Zero;
|
|||
use std::marker::PhantomData;
|
|||
|
|||
/// Gadget to compute $\sum_{j \in [t]} \gamma^{j} \cdot e_1 \cdot \sigma_j + \gamma^{t+1} \cdot e_2 \cdot \sum_{i=1}^{q} c_i * \prod_{j \in S_i} \theta_j$.
|
|||
/// This is the sum computed by the verifier and laid out in section 5, step 5 of "A multi-folding scheme for CCS".
|
|||
pub struct ComputeCFromSigmasAndThetasGadget<C: CurveGroup> {
|
|||
_c: PhantomData<C>,
|
|||
}
|
|||
|
|||
impl<C: CurveGroup> ComputeCFromSigmasAndThetasGadget<C> {
|
|||
/// Computes the sum $\sum_{j}^{j + n} \gamma^{j} \cdot eq_eval \cdot \sigma_{j}$, where $n$ is the length of the `sigmas` vector
|
|||
/// It corresponds to the first term of the sum that $\mathcal{V}$ has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
|||
///
|
|||
/// # Arguments
|
|||
/// - `sigmas`: vector of $\sigma_j$ values
|
|||
/// - `eq_eval`: the value of $\tilde{eq}(x_j, x^{\prime})$
|
|||
/// - `gamma`: value $\gamma$
|
|||
/// - `j`: the power at which we start to compute $\gamma^{j}$. This is needed in the context of multifolding.
|
|||
///
|
|||
/// # Notes
|
|||
/// In the context of multifolding, `j` corresponds to `ccs.t` in `compute_c_from_sigmas_and_thetas`
|
|||
fn sum_muls_gamma_pows_eq_sigma(
|
|||
gamma: FpVar<C::ScalarField>,
|
|||
eq_eval: FpVar<C::ScalarField>,
|
|||
sigmas: Vec<FpVar<C::ScalarField>>,
|
|||
j: FpVar<C::ScalarField>,
|
|||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
|||
let mut result = FpVar::<C::ScalarField>::zero();
|
|||
let mut gamma_pow = gamma.pow_le(&j.to_bits_le()?)?;
|
|||
for sigma in sigmas {
|
|||
result += gamma_pow.clone() * eq_eval.clone() * sigma;
|
|||
gamma_pow *= gamma.clone();
|
|||
}
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Computes $\sum_{i=1}^{q} c_i * \prod_{j \in S_i} theta_j$
|
|||
///
|
|||
/// # Arguments
|
|||
/// - `c_i`: vector of $c_i$ values
|
|||
/// - `thetas`: vector of pre-processed $\thetas[j]$ values corresponding to a particular `ccs.S[i]`
|
|||
///
|
|||
/// # Notes
|
|||
/// This is a part of the second term of the sum that $\mathcal{V}$ has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
|||
/// The first term is computed by `SumMulsGammaPowsEqSigmaGadget::sum_muls_gamma_pows_eq_sigma`.
|
|||
/// This is a doct product between a vector of c_i values and a vector of pre-processed $\theta_j$ values, where $j$ is a value from $S_i$.
|
|||
/// Hence, this requires some pre-processing of the $\theta_j$ values, before running this gadget.
|
|||
fn sum_ci_mul_prod_thetaj(
|
|||
c_i: Vec<FpVar<C::ScalarField>>,
|
|||
thetas: Vec<Vec<FpVar<C::ScalarField>>>,
|
|||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
|||
let mut result = FpVar::<C::ScalarField>::zero();
|
|||
for (i, c_i) in c_i.iter().enumerate() {
|
|||
let prod = &thetas[i].iter().fold(FpVar::one(), |acc, e| acc * e);
|
|||
result += c_i * prod;
|
|||
}
|
|||
Ok(result)
|
|||
}
|
|||
|
|||
/// Computes the sum that the verifier has to compute at section 5, step 5 of "A multi-folding scheme for CCS".
|
|||
///
|
|||
/// # Arguments
|
|||
/// - `cs`: constraint system
|
|||
/// - `ccs`: the CCS instance
|
|||
/// - `vec_sigmas`: vector of $\sigma_j$ values
|
|||
/// - `vec_thetas`: vector of $\theta_j$ values
|
|||
/// - `gamma`: value $\gamma$
|
|||
/// - `beta`: vector of $\beta_j$ values
|
|||
/// - `vec_r_x`: vector of $r_{x_j}$ values
|
|||
/// - `vec_r_x_prime`: vector of $r_{x_j}^{\prime}$ values
|
|||
///
|
|||
/// # Notes
|
|||
/// Arguments to this function are *almost* the same as the arguments to `compute_c_from_sigmas_and_thetas` in `utils.rs`.
|
|||
#[allow(clippy::too_many_arguments)]
|
|||
pub fn compute_c_from_sigmas_and_thetas(
|
|||
cs: ConstraintSystemRef<C::ScalarField>,
|
|||
ccs: &CCS<C>,
|
|||
vec_sigmas: Vec<Vec<FpVar<C::ScalarField>>>,
|
|||
vec_thetas: Vec<Vec<FpVar<C::ScalarField>>>,
|
|||
gamma: FpVar<C::ScalarField>,
|
|||
beta: Vec<FpVar<C::ScalarField>>,
|
|||
vec_r_x: Vec<Vec<FpVar<C::ScalarField>>>,
|
|||
vec_r_x_prime: Vec<FpVar<C::ScalarField>>,
|
|||
) -> Result<FpVar<C::ScalarField>, SynthesisError> {
|
|||
let mut c =
|
|||
FpVar::<C::ScalarField>::new_witness(cs.clone(), || Ok(C::ScalarField::zero()))?;
|
|||
let t = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
|||
Ok(C::ScalarField::from(ccs.t as u64))
|
|||
})?;
|
|||
|
|||
let mut e_lcccs = Vec::new();
|
|||
for r_x in vec_r_x.iter() {
|
|||
let e_1 = EqEvalGadget::eq_eval(r_x.to_vec(), vec_r_x_prime.to_vec())?;
|
|||
e_lcccs.push(e_1);
|
|||
}
|
|||
|
|||
for (i, sigmas) in vec_sigmas.iter().enumerate() {
|
|||
let i_var = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
|||
Ok(C::ScalarField::from(i as u64))
|
|||
})?;
|
|||
let pow = i_var * t.clone();
|
|||
c += Self::sum_muls_gamma_pows_eq_sigma(
|
|||
gamma.clone(),
|
|||
e_lcccs[i].clone(),
|
|||
sigmas.to_vec(),
|
|||
pow,
|
|||
)?;
|
|||
}
|
|||
|
|||
let mu = FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
|||
Ok(C::ScalarField::from(vec_sigmas.len() as u64))
|
|||
})?;
|
|||
let e_2 = EqEvalGadget::eq_eval(beta, vec_r_x_prime)?;
|
|||
for (k, thetas) in vec_thetas.iter().enumerate() {
|
|||
// get prepared thetas. only step different from original `compute_c_from_sigmas_and_thetas`
|
|||
let mut prepared_thetas = Vec::new();
|
|||
for i in 0..ccs.q {
|
|||
let prepared: Vec<FpVar<C::ScalarField>> =
|
|||
ccs.S[i].iter().map(|j| thetas[*j].clone()).collect();
|
|||
prepared_thetas.push(prepared.to_vec());
|
|||
}
|
|||
|
|||
let c_i = Vec::<FpVar<C::ScalarField>>::new_witness(cs.clone(), || Ok(ccs.c.clone()))
|
|||
.unwrap();
|
|||
let lhs = Self::sum_ci_mul_prod_thetaj(c_i.clone(), prepared_thetas.clone())?;
|
|||
|
|||
// compute gamma^(t+1)
|
|||
let pow = mu.clone() * t.clone()
|
|||
+ FpVar::<C::ScalarField>::new_witness(cs.clone(), || {
|
|||
Ok(C::ScalarField::from(k as u64))
|
|||
})?;
|
|||
let gamma_t1 = gamma.pow_le(&pow.to_bits_le()?)?;
|
|||
|
|||
c += gamma_t1.clone() * e_2.clone() * lhs.clone();
|
|||
}
|
|||
|
|||
Ok(c)
|
|||
}
|
|||
}
|
|||
|
|||
#[cfg(test)]
|
|||
mod tests {
|
|||
use super::ComputeCFromSigmasAndThetasGadget;
|
|||
use crate::{
|
|||
ccs::{
|
|||
tests::{get_test_ccs, get_test_z},
|
|||
CCS,
|
|||
},
|
|||
folding::hypernova::utils::{
|
|||
compute_c_from_sigmas_and_thetas, compute_sigmas_and_thetas, sum_ci_mul_prod_thetaj,
|
|||
sum_muls_gamma_pows_eq_sigma,
|
|||
},
|
|||
pedersen::Pedersen,
|
|||
utils::virtual_polynomial::eq_eval,
|
|||
};
|
|||
use ark_pallas::{Fr, Projective};
|
|||
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
|
|||
use ark_relations::r1cs::ConstraintSystem;
|
|||
use ark_std::{test_rng, UniformRand};
|
|||
|
|||
#[test]
|
|||
pub fn test_sum_muls_gamma_pow_eq_sigma_gadget() {
|
|||
let mut rng = test_rng();
|
|||
let ccs: CCS<Projective> = get_test_ccs();
|
|||
let z1 = get_test_z(3);
|
|||
let z2 = get_test_z(4);
|
|||
|
|||
let gamma: Fr = Fr::rand(&mut rng);
|
|||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
|
|||
// Initialize a multifolding object
|
|||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
|||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
|||
let sigmas_thetas =
|
|||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
|||
|
|||
let mut e_lcccs = Vec::new();
|
|||
for r_x in &vec![lcccs_instance.r_x] {
|
|||
e_lcccs.push(eq_eval(r_x, &r_x_prime).unwrap());
|
|||
}
|
|||
|
|||
// Initialize cs and gamma
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
|||
|
|||
for (i, sigmas) in sigmas_thetas.0.iter().enumerate() {
|
|||
let expected =
|
|||
sum_muls_gamma_pows_eq_sigma(gamma, e_lcccs[i], sigmas, (i * ccs.t) as u64);
|
|||
let sigmas_var =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap();
|
|||
let eq_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(e_lcccs[i])).unwrap();
|
|||
let pow =
|
|||
FpVar::<Fr>::new_witness(cs.clone(), || Ok(Fr::from((i * ccs.t) as u64))).unwrap();
|
|||
let computed =
|
|||
ComputeCFromSigmasAndThetasGadget::<Projective>::sum_muls_gamma_pows_eq_sigma(
|
|||
gamma_var.clone(),
|
|||
eq_var,
|
|||
sigmas_var,
|
|||
pow,
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(expected, computed.value().unwrap());
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
pub fn test_sum_ci_mul_prod_thetaj_gadget() {
|
|||
let mut rng = test_rng();
|
|||
let ccs: CCS<Projective> = get_test_ccs();
|
|||
let z1 = get_test_z(3);
|
|||
let z2 = get_test_z(4);
|
|||
|
|||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
|
|||
// Initialize a multifolding object
|
|||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
|||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
|||
let sigmas_thetas =
|
|||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
|||
|
|||
let mut e_lcccs = Vec::new();
|
|||
for r_x in &vec![lcccs_instance.r_x] {
|
|||
e_lcccs.push(eq_eval(r_x, &r_x_prime).unwrap());
|
|||
}
|
|||
|
|||
// Initialize cs
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let vec_thetas = sigmas_thetas.1;
|
|||
for (_, thetas) in vec_thetas.iter().enumerate() {
|
|||
// sum c_i * prod theta_j
|
|||
let expected = sum_ci_mul_prod_thetaj(&ccs, thetas); // from `compute_c_from_sigmas_and_thetas`
|
|||
let mut prepared_thetas = Vec::new();
|
|||
for i in 0..ccs.q {
|
|||
let prepared: Vec<Fr> = ccs.S[i].iter().map(|j| thetas[*j]).collect();
|
|||
prepared_thetas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(prepared)).unwrap());
|
|||
}
|
|||
let computed = ComputeCFromSigmasAndThetasGadget::<Projective>::sum_ci_mul_prod_thetaj(
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(ccs.c.clone())).unwrap(),
|
|||
prepared_thetas,
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(expected, computed.value().unwrap());
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
pub fn test_compute_c_from_sigmas_and_thetas_gadget() {
|
|||
let ccs: CCS<Projective> = get_test_ccs();
|
|||
let z1 = get_test_z(3);
|
|||
let z2 = get_test_z(4);
|
|||
|
|||
let mut rng = test_rng();
|
|||
let gamma: Fr = Fr::rand(&mut rng);
|
|||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
|||
|
|||
// Initialize a multifolding object
|
|||
let pedersen_params = Pedersen::new_params(&mut rng, ccs.n - ccs.l - 1);
|
|||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
|||
let sigmas_thetas =
|
|||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
|||
|
|||
let expected_c = compute_c_from_sigmas_and_thetas(
|
|||
&ccs,
|
|||
&sigmas_thetas,
|
|||
gamma,
|
|||
&beta,
|
|||
&vec![lcccs_instance.r_x.clone()],
|
|||
&r_x_prime,
|
|||
);
|
|||
|
|||
let cs = ConstraintSystem::<Fr>::new_ref();
|
|||
let mut vec_sigmas = Vec::new();
|
|||
let mut vec_thetas = Vec::new();
|
|||
for sigmas in sigmas_thetas.0 {
|
|||
vec_sigmas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap());
|
|||
}
|
|||
for thetas in sigmas_thetas.1 {
|
|||
vec_thetas
|
|||
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(thetas.clone())).unwrap());
|
|||
}
|
|||
let vec_r_x =
|
|||
vec![
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(lcccs_instance.r_x.clone()))
|
|||
.unwrap(),
|
|||
];
|
|||
let vec_r_x_prime =
|
|||
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(r_x_prime.clone())).unwrap();
|
|||
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
|
|||
let beta_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(beta.clone())).unwrap();
|
|||
let computed_c = ComputeCFromSigmasAndThetasGadget::compute_c_from_sigmas_and_thetas(
|
|||
cs,
|
|||
&ccs,
|
|||
vec_sigmas,
|
|||
vec_thetas,
|
|||
gamma_var,
|
|||
beta_var,
|
|||
vec_r_x,
|
|||
vec_r_x_prime,
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
assert_eq!(expected_c, computed_c.value().unwrap());
|
|||
}
|
|||
}
|
@ -1,5 +1,6 @@ |
|||
/// Implements the scheme described in [HyperNova](https://eprint.iacr.org/2023/573.pdf)
|
|||
pub mod cccs;
|
|||
pub mod circuit;
|
|||
pub mod lcccs;
|
|||
pub mod nimfs;
|
|||
pub mod utils;
|