mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-07 14:31:31 +01:00
Optimize native nimfs (#110)
* Optimize the HyperNova `compute_g`, `compute_Ls` and `to_lcccs` methods - Optimize the HyperNova `compute_g`, `compute_Ls` and `to_lcccs` methods - in some tests, increase the size of test matrices to a more real-world size. | method | matrix size | old version seconds | new version seconds | | --------------------- | ------------- | ------------------- | ------------------- | | compute_g | 2^8 x 2^8 | 16.48 | 0.16 | | compute_g | 2^9 x 2^9 | 122.62 | 0.51 | | compute_Ls | 2^8 x 2^8 | 9.73 | 0.11 | | compute_Ls | 2^9 x 2^9 | 67.16 | 0.38 | | to_lcccs | 2^8 x 2^8 | 4.56 | 0.21 | | to_lcccs | 2^9 x 2^9 | 67.65 | 0.84 | - Note: 2^16 x 2^16 is the actual size (upperbound) of the circuit, which is not represented in the table since it was needing too much ram to even be computed. * Optimize HyperNova's `compute_sigmas_thetas` and `compute_Q` | method | matrix size | old version seconds | new version seconds | | ------------- | ------------- | ------------------- | ------------------- | | compute_sigmas_thetas | 2^8 x 2^8 | 12.86 | 0.13 | | compute_sigmas_thetas | 2^9 x 2^9 | 100.01 | 0.51 | | compute_Q | 2^8 x 2^8 | 4.49 | 0.07 | | compute_Q | 2^9 x 2^9 | 70.77 | 0.55 | * optimize LCCCS::check_relation & CCCS::check_relation, and remove unnessary methods after last reimplementations
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
use ark_ff::PrimeField;
|
||||
use ark_std::log2;
|
||||
|
||||
use crate::utils::vec::*;
|
||||
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
|
||||
use crate::Error;
|
||||
|
||||
pub mod r1cs;
|
||||
@@ -48,7 +48,7 @@ impl<F: PrimeField> CCS<F> {
|
||||
// complete the hadamard chain
|
||||
let mut hadamard_result = vec![F::one(); self.m];
|
||||
for M_j in vec_M_j.into_iter() {
|
||||
hadamard_result = hadamard(&hadamard_result, &mat_vec_mul_sparse(M_j, z)?)?;
|
||||
hadamard_result = hadamard(&hadamard_result, &mat_vec_mul(M_j, z)?)?;
|
||||
}
|
||||
|
||||
// multiply by the coefficient of this step
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
use ark_ff::PrimeField;
|
||||
|
||||
use crate::utils::vec::*;
|
||||
use crate::Error;
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
use ark_std::rand::Rng;
|
||||
|
||||
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
|
||||
use crate::Error;
|
||||
|
||||
#[derive(Debug, Clone, Eq, PartialEq)]
|
||||
pub struct R1CS<F: PrimeField> {
|
||||
@@ -13,6 +14,15 @@ pub struct R1CS<F: PrimeField> {
|
||||
}
|
||||
|
||||
impl<F: PrimeField> R1CS<F> {
|
||||
pub fn rand<R: Rng>(rng: &mut R, n_rows: usize, n_cols: usize) -> Self {
|
||||
Self {
|
||||
l: 1,
|
||||
A: SparseMatrix::rand(rng, n_rows, n_cols),
|
||||
B: SparseMatrix::rand(rng, n_rows, n_cols),
|
||||
C: SparseMatrix::rand(rng, n_rows, n_cols),
|
||||
}
|
||||
}
|
||||
|
||||
/// returns a tuple containing (w, x) (witness and public inputs respectively)
|
||||
pub fn split_z(&self, z: &[F]) -> (Vec<F>, Vec<F>) {
|
||||
(z[self.l + 1..].to_vec(), z[1..self.l + 1].to_vec())
|
||||
@@ -20,9 +30,9 @@ impl<F: PrimeField> R1CS<F> {
|
||||
|
||||
/// check that a R1CS structure is satisfied by a z vector. Only for testing.
|
||||
pub fn check_relation(&self, z: &[F]) -> Result<(), Error> {
|
||||
let Az = mat_vec_mul_sparse(&self.A, z)?;
|
||||
let Bz = mat_vec_mul_sparse(&self.B, z)?;
|
||||
let Cz = mat_vec_mul_sparse(&self.C, z)?;
|
||||
let Az = mat_vec_mul(&self.A, z)?;
|
||||
let Bz = mat_vec_mul(&self.B, z)?;
|
||||
let Cz = mat_vec_mul(&self.C, z)?;
|
||||
let AzBz = hadamard(&Az, &Bz)?;
|
||||
if AzBz != Cz {
|
||||
return Err(Error::NotSatisfied);
|
||||
@@ -58,9 +68,9 @@ pub struct RelaxedR1CS<F: PrimeField> {
|
||||
impl<F: PrimeField> RelaxedR1CS<F> {
|
||||
/// check that a RelaxedR1CS structure is satisfied by a z vector. Only for testing.
|
||||
pub fn check_relation(&self, z: &[F]) -> Result<(), Error> {
|
||||
let Az = mat_vec_mul_sparse(&self.A, z)?;
|
||||
let Bz = mat_vec_mul_sparse(&self.B, z)?;
|
||||
let Cz = mat_vec_mul_sparse(&self.C, z)?;
|
||||
let Az = mat_vec_mul(&self.A, z)?;
|
||||
let Bz = mat_vec_mul(&self.B, z)?;
|
||||
let Cz = mat_vec_mul(&self.C, z)?;
|
||||
let uCz = vec_scalar_mul(&Cz, &self.u);
|
||||
let uCzE = vec_add(&uCz, &self.E)?;
|
||||
let AzBz = hadamard(&Az, &Bz)?;
|
||||
|
||||
@@ -2,21 +2,19 @@ use ark_ec::CurveGroup;
|
||||
use ark_ff::PrimeField;
|
||||
use ark_std::One;
|
||||
use ark_std::Zero;
|
||||
use std::ops::Add;
|
||||
use std::sync::Arc;
|
||||
|
||||
use ark_std::rand::Rng;
|
||||
|
||||
use super::utils::compute_sum_Mz;
|
||||
use crate::ccs::CCS;
|
||||
use crate::commitment::{
|
||||
pedersen::{Params as PedersenParams, Pedersen},
|
||||
CommitmentScheme,
|
||||
};
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use crate::utils::mle::matrix_to_mle;
|
||||
use crate::utils::mle::vec_to_mle;
|
||||
use crate::utils::virtual_polynomial::VirtualPolynomial;
|
||||
use crate::utils::mle::dense_vec_to_dense_mle;
|
||||
use crate::utils::vec::mat_vec_mul;
|
||||
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, VirtualPolynomial};
|
||||
use crate::Error;
|
||||
|
||||
/// Witness for the LCCCS & CCCS, containing the w vector, and the r_w used as randomness in the Pedersen commitment.
|
||||
@@ -61,41 +59,35 @@ impl<F: PrimeField> CCS<F> {
|
||||
|
||||
/// Computes q(x) = \sum^q c_i * \prod_{j \in S_i} ( \sum_{y \in {0,1}^s'} M_j(x, y) * z(y) )
|
||||
/// polynomial over x
|
||||
pub fn compute_q(&self, z: &[F]) -> VirtualPolynomial<F> {
|
||||
let z_mle = vec_to_mle(self.s_prime, z);
|
||||
let mut q = VirtualPolynomial::<F>::new(self.s);
|
||||
|
||||
pub fn compute_q(&self, z: &[F]) -> Result<VirtualPolynomial<F>, Error> {
|
||||
let mut q_x = VirtualPolynomial::<F>::new(self.s);
|
||||
for i in 0..self.q {
|
||||
let mut prod: VirtualPolynomial<F> = VirtualPolynomial::<F>::new(self.s);
|
||||
for j in self.S[i].clone() {
|
||||
let M_j = matrix_to_mle(self.M[j].clone());
|
||||
|
||||
let sum_Mz = compute_sum_Mz(M_j, &z_mle, self.s_prime);
|
||||
|
||||
// Fold this sum into the running product
|
||||
if prod.products.is_empty() {
|
||||
// If this is the first time we are adding something to this virtual polynomial, we need to
|
||||
// explicitly add the products using add_mle_list()
|
||||
// XXX is this true? improve API
|
||||
prod.add_mle_list([Arc::new(sum_Mz)], F::one()).unwrap();
|
||||
} else {
|
||||
prod.mul_by_mle(Arc::new(sum_Mz), F::one()).unwrap();
|
||||
}
|
||||
let mut Q_k = vec![];
|
||||
for &j in self.S[i].iter() {
|
||||
Q_k.push(dense_vec_to_dense_mle(self.s, &mat_vec_mul(&self.M[j], z)?));
|
||||
}
|
||||
// Multiply by the product by the coefficient c_i
|
||||
prod.scalar_mul(&self.c[i]);
|
||||
// Add it to the running sum
|
||||
q = q.add(&prod);
|
||||
q_x.add_mle_list(Q_k.iter().map(|v| Arc::new(v.clone())), self.c[i])?;
|
||||
}
|
||||
q
|
||||
Ok(q_x)
|
||||
}
|
||||
|
||||
/// Computes Q(x) = eq(beta, x) * q(x)
|
||||
/// = eq(beta, x) * \sum^q c_i * \prod_{j \in S_i} ( \sum_{y \in {0,1}^s'} M_j(x, y) * z(y) )
|
||||
/// polynomial over x
|
||||
pub fn compute_Q(&self, z: &[F], beta: &[F]) -> VirtualPolynomial<F> {
|
||||
let q = self.compute_q(z);
|
||||
q.build_f_hat(beta).unwrap()
|
||||
pub fn compute_Q(&self, z: &[F], beta: &[F]) -> Result<VirtualPolynomial<F>, Error> {
|
||||
let eq_beta = build_eq_x_r_vec(beta)?;
|
||||
let eq_beta_mle = dense_vec_to_dense_mle(self.s, &eq_beta);
|
||||
|
||||
let mut Q = VirtualPolynomial::<F>::new(self.s);
|
||||
for i in 0..self.q {
|
||||
let mut Q_k = vec![];
|
||||
for &j in self.S[i].iter() {
|
||||
Q_k.push(dense_vec_to_dense_mle(self.s, &mat_vec_mul(&self.M[j], z)?));
|
||||
}
|
||||
Q_k.push(eq_beta_mle.clone());
|
||||
Q.add_mle_list(Q_k.iter().map(|v| Arc::new(v.clone())), self.c[i])?;
|
||||
}
|
||||
Ok(Q)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -118,9 +110,10 @@ impl<C: CurveGroup> CCCS<C> {
|
||||
[vec![C::ScalarField::one()], self.x.clone(), w.w.to_vec()].concat();
|
||||
|
||||
// A CCCS relation is satisfied if the q(x) multivariate polynomial evaluates to zero in the hypercube
|
||||
let q_x = ccs.compute_q(&z);
|
||||
let q_x = ccs.compute_q(&z)?;
|
||||
|
||||
for x in BooleanHypercube::new(ccs.s) {
|
||||
if !q_x.evaluate(&x).unwrap().is_zero() {
|
||||
if !q_x.evaluate(&x)?.is_zero() {
|
||||
return Err(Error::NotSatisfied);
|
||||
}
|
||||
}
|
||||
@@ -147,7 +140,7 @@ pub mod tests {
|
||||
let ccs = get_test_ccs::<Fr>();
|
||||
let z = get_test_z(3);
|
||||
|
||||
let q = ccs.compute_q(&z);
|
||||
let q = ccs.compute_q(&z).unwrap();
|
||||
|
||||
// Evaluate inside the hypercube
|
||||
for x in BooleanHypercube::new(ccs.s) {
|
||||
@@ -171,7 +164,7 @@ pub mod tests {
|
||||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
// Compute Q(x) = eq(beta, x) * q(x).
|
||||
let Q = ccs.compute_Q(&z, &beta);
|
||||
let Q = ccs.compute_Q(&z, &beta).unwrap();
|
||||
|
||||
// Let's consider the multilinear polynomial G(x) = \sum_{y \in {0, 1}^s} eq(x, y) q(y)
|
||||
// which interpolates the multivariate polynomial q(x) inside the hypercube.
|
||||
@@ -204,9 +197,9 @@ pub mod tests {
|
||||
|
||||
// Now test that if we create Q(x) with eq(d,y) where d is inside the hypercube, \sum Q(x) should be G(d) which
|
||||
// should be equal to q(d), since G(x) interpolates q(x) inside the hypercube
|
||||
let q = ccs.compute_q(&z);
|
||||
let q = ccs.compute_q(&z).unwrap();
|
||||
for d in BooleanHypercube::new(ccs.s) {
|
||||
let Q_at_d = ccs.compute_Q(&z, &d);
|
||||
let Q_at_d = ccs.compute_Q(&z, &d).unwrap();
|
||||
|
||||
// Get G(d) by summing over Q_d(x) over the hypercube
|
||||
let G_at_d = BooleanHypercube::new(ccs.s)
|
||||
@@ -217,7 +210,7 @@ pub mod tests {
|
||||
|
||||
// Now test that they should disagree outside of the hypercube
|
||||
let r: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
let Q_at_r = ccs.compute_Q(&z, &r);
|
||||
let Q_at_r = ccs.compute_Q(&z, &r).unwrap();
|
||||
|
||||
// Get G(d) by summing over Q_d(x) over the hypercube
|
||||
let G_at_r = BooleanHypercube::new(ccs.s)
|
||||
|
||||
@@ -361,7 +361,7 @@ mod tests {
|
||||
commitment::{pedersen::Pedersen, CommitmentScheme},
|
||||
folding::hypernova::{
|
||||
nimfs::NIMFS,
|
||||
utils::{compute_c, compute_sigmas_and_thetas},
|
||||
utils::{compute_c, compute_sigmas_thetas},
|
||||
},
|
||||
transcript::{
|
||||
poseidon::{poseidon_canonical_config, PoseidonTranscript, PoseidonTranscriptVar},
|
||||
@@ -409,7 +409,7 @@ mod tests {
|
||||
cccs_instances.push(inst);
|
||||
}
|
||||
|
||||
let sigmas_thetas = compute_sigmas_and_thetas(&ccs, &z_lcccs, &z_cccs, &r_x_prime);
|
||||
let sigmas_thetas = compute_sigmas_thetas(&ccs, &z_lcccs, &z_cccs, &r_x_prime).unwrap();
|
||||
|
||||
let expected_c = compute_c(
|
||||
&ccs,
|
||||
@@ -421,7 +421,8 @@ mod tests {
|
||||
.map(|lcccs| lcccs.r_x.clone())
|
||||
.collect(),
|
||||
&r_x_prime,
|
||||
);
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
let mut vec_sigmas = Vec::new();
|
||||
|
||||
@@ -1,20 +1,18 @@
|
||||
use ark_ec::CurveGroup;
|
||||
use ark_ff::PrimeField;
|
||||
use ark_poly::DenseMultilinearExtension;
|
||||
use ark_std::One;
|
||||
use std::sync::Arc;
|
||||
use ark_poly::MultilinearExtension;
|
||||
|
||||
use ark_std::rand::Rng;
|
||||
|
||||
use super::cccs::Witness;
|
||||
use super::utils::{compute_all_sum_Mz_evals, compute_sum_Mz};
|
||||
use crate::ccs::CCS;
|
||||
use crate::commitment::{
|
||||
pedersen::{Params as PedersenParams, Pedersen},
|
||||
CommitmentScheme,
|
||||
};
|
||||
use crate::utils::mle::{matrix_to_mle, vec_to_mle};
|
||||
use crate::utils::virtual_polynomial::VirtualPolynomial;
|
||||
use crate::utils::mle::dense_vec_to_dense_mle;
|
||||
use crate::utils::vec::mat_vec_mul;
|
||||
use crate::Error;
|
||||
|
||||
/// Linearized Committed CCS instance
|
||||
@@ -33,12 +31,6 @@ pub struct LCCCS<C: CurveGroup> {
|
||||
}
|
||||
|
||||
impl<F: PrimeField> CCS<F> {
|
||||
/// Compute v_j values of the linearized committed CCS form
|
||||
/// Given `r`, compute: \sum_{y \in {0,1}^s'} M_j(r, y) * z(y)
|
||||
fn compute_v_j(&self, z: &[F], r: &[F]) -> Vec<F> {
|
||||
compute_all_sum_Mz_evals(&self.M, z, r, self.s_prime)
|
||||
}
|
||||
|
||||
pub fn to_lcccs<R: Rng, C: CurveGroup>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
@@ -54,7 +46,18 @@ impl<F: PrimeField> CCS<F> {
|
||||
let C = Pedersen::<C, true>::commit(pedersen_params, &w, &r_w)?;
|
||||
|
||||
let r_x: Vec<C::ScalarField> = (0..self.s).map(|_| C::ScalarField::rand(rng)).collect();
|
||||
let v = self.compute_v_j(z, &r_x);
|
||||
|
||||
let Mzs: Vec<DenseMultilinearExtension<F>> = self
|
||||
.M
|
||||
.iter()
|
||||
.map(|M_j| Ok(dense_vec_to_dense_mle(self.s, &mat_vec_mul(M_j, z)?)))
|
||||
.collect::<Result<_, Error>>()?;
|
||||
|
||||
// compute v_j
|
||||
let v: Vec<F> = Mzs
|
||||
.iter()
|
||||
.map(|Mz| Mz.evaluate(&r_x).ok_or(Error::EvaluationFail))
|
||||
.collect::<Result<_, Error>>()?;
|
||||
|
||||
Ok((
|
||||
LCCCS::<C> {
|
||||
@@ -70,29 +73,6 @@ impl<F: PrimeField> CCS<F> {
|
||||
}
|
||||
|
||||
impl<C: CurveGroup> LCCCS<C> {
|
||||
/// Compute all L_j(x) polynomials
|
||||
pub fn compute_Ls(
|
||||
&self,
|
||||
ccs: &CCS<C::ScalarField>,
|
||||
z: &[C::ScalarField],
|
||||
) -> Vec<VirtualPolynomial<C::ScalarField>> {
|
||||
let z_mle = vec_to_mle(ccs.s_prime, z);
|
||||
// Convert all matrices to MLE
|
||||
let M_x_y_mle: Vec<DenseMultilinearExtension<C::ScalarField>> =
|
||||
ccs.M.clone().into_iter().map(matrix_to_mle).collect();
|
||||
|
||||
let mut vec_L_j_x = Vec::with_capacity(ccs.t);
|
||||
for M_j in M_x_y_mle {
|
||||
let sum_Mz = compute_sum_Mz(M_j, &z_mle, ccs.s_prime);
|
||||
let sum_Mz_virtual =
|
||||
VirtualPolynomial::new_from_mle(&Arc::new(sum_Mz.clone()), C::ScalarField::one());
|
||||
let L_j_x = sum_Mz_virtual.build_f_hat(&self.r_x).unwrap();
|
||||
vec_L_j_x.push(L_j_x);
|
||||
}
|
||||
|
||||
vec_L_j_x
|
||||
}
|
||||
|
||||
/// Perform the check of the LCCCS instance described at section 4.2
|
||||
pub fn check_relation(
|
||||
&self,
|
||||
@@ -108,7 +88,15 @@ impl<C: CurveGroup> LCCCS<C> {
|
||||
|
||||
// check CCS relation
|
||||
let z: Vec<C::ScalarField> = [vec![self.u], self.x.clone(), w.w.to_vec()].concat();
|
||||
let computed_v = compute_all_sum_Mz_evals(&ccs.M, &z, &self.r_x, ccs.s_prime);
|
||||
|
||||
let computed_v: Vec<C::ScalarField> = ccs
|
||||
.M
|
||||
.iter()
|
||||
.map(|M_j| {
|
||||
let Mz_mle = dense_vec_to_dense_mle(ccs.s, &mat_vec_mul(M_j, &z)?);
|
||||
Mz_mle.evaluate(&self.r_x).ok_or(Error::EvaluationFail)
|
||||
})
|
||||
.collect::<Result<_, Error>>()?;
|
||||
if computed_v != self.v {
|
||||
return Err(Error::NotSatisfied);
|
||||
}
|
||||
@@ -118,31 +106,64 @@ impl<C: CurveGroup> LCCCS<C> {
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_std::Zero;
|
||||
|
||||
use crate::ccs::tests::{get_test_ccs, get_test_z};
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use ark_std::test_rng;
|
||||
|
||||
use ark_pallas::{Fr, Projective};
|
||||
use ark_std::test_rng;
|
||||
use ark_std::One;
|
||||
use ark_std::UniformRand;
|
||||
use ark_std::Zero;
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::*;
|
||||
use crate::ccs::{
|
||||
r1cs::R1CS,
|
||||
tests::{get_test_ccs, get_test_z},
|
||||
};
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, VirtualPolynomial};
|
||||
|
||||
// method for testing
|
||||
pub fn compute_Ls<C: CurveGroup>(
|
||||
ccs: &CCS<C::ScalarField>,
|
||||
lcccs: &LCCCS<C>,
|
||||
z: &[C::ScalarField],
|
||||
) -> Vec<VirtualPolynomial<C::ScalarField>> {
|
||||
let eq_rx = build_eq_x_r_vec(&lcccs.r_x).unwrap();
|
||||
let eq_rx_mle = dense_vec_to_dense_mle(ccs.s, &eq_rx);
|
||||
|
||||
let mut Ls = Vec::with_capacity(ccs.t);
|
||||
for M_j in ccs.M.iter() {
|
||||
let mut L = VirtualPolynomial::<C::ScalarField>::new(ccs.s);
|
||||
let mut Mz = vec![dense_vec_to_dense_mle(ccs.s, &mat_vec_mul(M_j, z).unwrap())];
|
||||
Mz.push(eq_rx_mle.clone());
|
||||
L.add_mle_list(
|
||||
Mz.iter().map(|v| Arc::new(v.clone())),
|
||||
C::ScalarField::one(),
|
||||
)
|
||||
.unwrap();
|
||||
Ls.push(L);
|
||||
}
|
||||
Ls
|
||||
}
|
||||
|
||||
#[test]
|
||||
/// Test linearized CCCS v_j against the L_j(x)
|
||||
fn test_lcccs_v_j() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
let ccs = get_test_ccs();
|
||||
let z = get_test_z(3);
|
||||
ccs.check_relation(&z.clone()).unwrap();
|
||||
let n_rows = 2_u32.pow(5) as usize;
|
||||
let n_cols = 2_u32.pow(5) as usize;
|
||||
let r1cs = R1CS::rand(&mut rng, n_rows, n_cols);
|
||||
let ccs = CCS::from_r1cs(r1cs);
|
||||
let z: Vec<Fr> = (0..n_cols).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
|
||||
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z).unwrap();
|
||||
// with our test vector coming from R1CS, v should have length 3
|
||||
assert_eq!(lcccs.v.len(), 3);
|
||||
|
||||
let vec_L_j_x = lcccs.compute_Ls(&ccs, &z);
|
||||
let vec_L_j_x = compute_Ls(&ccs, &lcccs, &z);
|
||||
assert_eq!(vec_L_j_x.len(), lcccs.v.len());
|
||||
|
||||
for (v_i, L_j_x) in lcccs.v.into_iter().zip(vec_L_j_x) {
|
||||
@@ -175,7 +196,7 @@ pub mod tests {
|
||||
assert_eq!(lcccs.v.len(), 3);
|
||||
|
||||
// Bad compute L_j(x) with the bad z
|
||||
let vec_L_j_x = lcccs.compute_Ls(&ccs, &bad_z);
|
||||
let vec_L_j_x = compute_Ls(&ccs, &lcccs, &bad_z);
|
||||
assert_eq!(vec_L_j_x.len(), lcccs.v.len());
|
||||
|
||||
// Make sure that the LCCCS is not satisfied given these L_j(x)
|
||||
@@ -189,7 +210,6 @@ pub mod tests {
|
||||
satisfied = false;
|
||||
}
|
||||
}
|
||||
|
||||
assert!(!satisfied);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@ use ark_std::{One, Zero};
|
||||
|
||||
use super::cccs::{Witness, CCCS};
|
||||
use super::lcccs::LCCCS;
|
||||
use super::utils::{compute_c, compute_g, compute_sigmas_and_thetas};
|
||||
use super::utils::{compute_c, compute_g, compute_sigmas_thetas};
|
||||
use crate::ccs::CCS;
|
||||
use crate::transcript::Transcript;
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
@@ -200,7 +200,7 @@ where
|
||||
let beta: Vec<C::ScalarField> = transcript.get_challenges(ccs.s);
|
||||
|
||||
// Compute g(x)
|
||||
let g = compute_g(ccs, running_instances, &z_lcccs, &z_cccs, gamma, &beta);
|
||||
let g = compute_g(ccs, running_instances, &z_lcccs, &z_cccs, gamma, &beta)?;
|
||||
|
||||
// Step 3: Run the sumcheck prover
|
||||
let sumcheck_proof = IOPSumCheck::<C, T>::prove(&g, transcript)
|
||||
@@ -244,7 +244,7 @@ where
|
||||
let r_x_prime = sumcheck_proof.point.clone();
|
||||
|
||||
// Step 4: compute sigmas and thetas
|
||||
let sigmas_thetas = compute_sigmas_and_thetas(ccs, &z_lcccs, &z_cccs, &r_x_prime);
|
||||
let sigmas_thetas = compute_sigmas_thetas(ccs, &z_lcccs, &z_cccs, &r_x_prime)?;
|
||||
|
||||
// Step 6: Get the folding challenge
|
||||
let rho_scalar = C::ScalarField::from_le_bytes_mod_order(b"rho");
|
||||
@@ -336,7 +336,7 @@ where
|
||||
.map(|lcccs| lcccs.r_x.clone())
|
||||
.collect(),
|
||||
&r_x_prime,
|
||||
);
|
||||
)?;
|
||||
|
||||
// check that the g(r_x') from the sumcheck proof is equal to the computed c from sigmas&thetas
|
||||
if c != sumcheck_subclaim.expected_evaluation {
|
||||
@@ -345,9 +345,10 @@ where
|
||||
|
||||
// Sanity check: we can also compute g(r_x') from the proof last evaluation value, and
|
||||
// should be equal to the previously obtained values.
|
||||
let g_on_rxprime_from_sumcheck_last_eval =
|
||||
DensePolynomial::from_coefficients_slice(&proof.sc_proof.proofs.last().unwrap().coeffs)
|
||||
.evaluate(r_x_prime.last().unwrap());
|
||||
let g_on_rxprime_from_sumcheck_last_eval = DensePolynomial::from_coefficients_slice(
|
||||
&proof.sc_proof.proofs.last().ok_or(Error::Empty)?.coeffs,
|
||||
)
|
||||
.evaluate(r_x_prime.last().ok_or(Error::Empty)?);
|
||||
if g_on_rxprime_from_sumcheck_last_eval != c {
|
||||
return Err(Error::NotEqual);
|
||||
}
|
||||
@@ -395,7 +396,7 @@ pub mod tests {
|
||||
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
||||
compute_sigmas_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime).unwrap();
|
||||
|
||||
let (pedersen_params, _) =
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
|
||||
@@ -1,88 +1,52 @@
|
||||
use ark_ec::CurveGroup;
|
||||
use ark_ff::{Field, PrimeField};
|
||||
use ark_ff::PrimeField;
|
||||
use ark_poly::DenseMultilinearExtension;
|
||||
use ark_poly::MultilinearExtension;
|
||||
use std::ops::Add;
|
||||
|
||||
use crate::utils::multilinear_polynomial::fix_variables;
|
||||
use crate::utils::multilinear_polynomial::scalar_mul;
|
||||
use ark_std::One;
|
||||
use std::sync::Arc;
|
||||
|
||||
use super::lcccs::LCCCS;
|
||||
use super::nimfs::SigmasThetas;
|
||||
use crate::ccs::CCS;
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use crate::utils::mle::dense_vec_to_mle;
|
||||
use crate::utils::mle::matrix_to_mle;
|
||||
use crate::utils::vec::SparseMatrix;
|
||||
use crate::utils::virtual_polynomial::{eq_eval, VirtualPolynomial};
|
||||
|
||||
/// Return a vector of evaluations p_j(r) = \sum_{y \in {0,1}^s'} M_j(r, y) * z(y) for all j values
|
||||
/// in 0..self.t
|
||||
pub fn compute_all_sum_Mz_evals<F: PrimeField>(
|
||||
vec_M: &[SparseMatrix<F>],
|
||||
z: &[F],
|
||||
r: &[F],
|
||||
s_prime: usize,
|
||||
) -> Vec<F> {
|
||||
// Convert z to MLE
|
||||
let z_y_mle = dense_vec_to_mle(s_prime, z);
|
||||
// Convert all matrices to MLE
|
||||
let M_x_y_mle: Vec<DenseMultilinearExtension<F>> =
|
||||
vec_M.iter().cloned().map(matrix_to_mle).collect();
|
||||
|
||||
let mut v = Vec::with_capacity(M_x_y_mle.len());
|
||||
for M_i in M_x_y_mle {
|
||||
let sum_Mz = compute_sum_Mz(M_i, &z_y_mle, s_prime);
|
||||
let v_i = sum_Mz.evaluate(r).unwrap();
|
||||
v.push(v_i);
|
||||
}
|
||||
v
|
||||
}
|
||||
|
||||
/// Return the multilinear polynomial p(x) = \sum_{y \in {0,1}^s'} M_j(x, y) * z(y)
|
||||
pub fn compute_sum_Mz<F: PrimeField>(
|
||||
M_j: DenseMultilinearExtension<F>,
|
||||
z: &DenseMultilinearExtension<F>,
|
||||
s_prime: usize,
|
||||
) -> DenseMultilinearExtension<F> {
|
||||
let mut sum_Mz = DenseMultilinearExtension {
|
||||
evaluations: vec![F::zero(); M_j.evaluations.len()],
|
||||
num_vars: M_j.num_vars - s_prime,
|
||||
};
|
||||
|
||||
let bhc = BooleanHypercube::new(s_prime);
|
||||
for y in bhc.into_iter() {
|
||||
// In a slightly counter-intuitive fashion fix_variables() fixes the right-most variables of the polynomial. So
|
||||
// for a polynomial M(x,y) and a random field element r, if we do fix_variables(M,r) we will get M(x,r).
|
||||
let M_j_y = fix_variables(&M_j, &y);
|
||||
let z_y = z.evaluate(&y).unwrap();
|
||||
let M_j_z = scalar_mul(&M_j_y, &z_y);
|
||||
sum_Mz = sum_Mz.add(M_j_z);
|
||||
}
|
||||
sum_Mz
|
||||
}
|
||||
use crate::utils::mle::dense_vec_to_dense_mle;
|
||||
use crate::utils::vec::mat_vec_mul;
|
||||
use crate::utils::virtual_polynomial::{build_eq_x_r_vec, eq_eval, VirtualPolynomial};
|
||||
use crate::Error;
|
||||
|
||||
/// Compute the arrays of sigma_i and theta_i from step 4 corresponding to the LCCCS and CCCS
|
||||
/// instances
|
||||
pub fn compute_sigmas_and_thetas<F: PrimeField>(
|
||||
pub fn compute_sigmas_thetas<F: PrimeField>(
|
||||
ccs: &CCS<F>,
|
||||
z_lcccs: &[Vec<F>],
|
||||
z_cccs: &[Vec<F>],
|
||||
r_x_prime: &[F],
|
||||
) -> SigmasThetas<F> {
|
||||
) -> Result<SigmasThetas<F>, Error> {
|
||||
let mut sigmas: Vec<Vec<F>> = Vec::new();
|
||||
for z_lcccs_i in z_lcccs {
|
||||
// sigmas
|
||||
let sigma_i = compute_all_sum_Mz_evals(&ccs.M, z_lcccs_i, r_x_prime, ccs.s_prime);
|
||||
let mut Mzs: Vec<DenseMultilinearExtension<F>> = vec![];
|
||||
for M_j in ccs.M.iter() {
|
||||
Mzs.push(dense_vec_to_dense_mle(ccs.s, &mat_vec_mul(M_j, z_lcccs_i)?));
|
||||
}
|
||||
let sigma_i = Mzs
|
||||
.iter()
|
||||
.map(|Mz| Mz.evaluate(r_x_prime).ok_or(Error::EvaluationFail))
|
||||
.collect::<Result<_, Error>>()?;
|
||||
sigmas.push(sigma_i);
|
||||
}
|
||||
|
||||
let mut thetas: Vec<Vec<F>> = Vec::new();
|
||||
for z_cccs_i in z_cccs {
|
||||
// thetas
|
||||
let theta_i = compute_all_sum_Mz_evals(&ccs.M, z_cccs_i, r_x_prime, ccs.s_prime);
|
||||
let mut Mzs: Vec<DenseMultilinearExtension<F>> = vec![];
|
||||
for M_j in ccs.M.iter() {
|
||||
Mzs.push(dense_vec_to_dense_mle(ccs.s, &mat_vec_mul(M_j, z_cccs_i)?));
|
||||
}
|
||||
let theta_i = Mzs
|
||||
.iter()
|
||||
.map(|Mz| Mz.evaluate(r_x_prime).ok_or(Error::EvaluationFail))
|
||||
.collect::<Result<_, Error>>()?;
|
||||
thetas.push(theta_i);
|
||||
}
|
||||
SigmasThetas(sigmas, thetas)
|
||||
Ok(SigmasThetas(sigmas, thetas))
|
||||
}
|
||||
|
||||
/// computes c from the step 5 in section 5 of HyperNova, adapted to multiple LCCCS & CCCS
|
||||
@@ -99,13 +63,13 @@ pub fn compute_c<F: PrimeField>(
|
||||
beta: &[F],
|
||||
vec_r_x: &Vec<Vec<F>>,
|
||||
r_x_prime: &[F],
|
||||
) -> F {
|
||||
) -> Result<F, Error> {
|
||||
let (vec_sigmas, vec_thetas) = (st.0.clone(), st.1.clone());
|
||||
let mut c = F::zero();
|
||||
|
||||
let mut e_lcccs = Vec::new();
|
||||
for r_x in vec_r_x {
|
||||
e_lcccs.push(eq_eval(r_x, r_x_prime).unwrap());
|
||||
e_lcccs.push(eq_eval(r_x, r_x_prime)?);
|
||||
}
|
||||
for (i, sigmas) in vec_sigmas.iter().enumerate() {
|
||||
// (sum gamma^j * e_i * sigma_j)
|
||||
@@ -116,7 +80,7 @@ pub fn compute_c<F: PrimeField>(
|
||||
}
|
||||
|
||||
let mu = vec_sigmas.len();
|
||||
let e2 = eq_eval(beta, r_x_prime).unwrap();
|
||||
let e2 = eq_eval(beta, r_x_prime)?;
|
||||
for (k, thetas) in vec_thetas.iter().enumerate() {
|
||||
// + gamma^{t+1} * e2 * sum c_i * prod theta_j
|
||||
let mut lhs = F::zero();
|
||||
@@ -130,7 +94,7 @@ pub fn compute_c<F: PrimeField>(
|
||||
let gamma_t1 = gamma.pow([(mu * ccs.t + k) as u64]);
|
||||
c += gamma_t1 * e2 * lhs;
|
||||
}
|
||||
c
|
||||
Ok(c)
|
||||
}
|
||||
|
||||
/// Compute g(x) polynomial for the given inputs.
|
||||
@@ -141,75 +105,76 @@ pub fn compute_g<C: CurveGroup>(
|
||||
z_cccs: &[Vec<C::ScalarField>],
|
||||
gamma: C::ScalarField,
|
||||
beta: &[C::ScalarField],
|
||||
) -> VirtualPolynomial<C::ScalarField> {
|
||||
let mu = running_instances.len();
|
||||
let mut vec_Ls: Vec<VirtualPolynomial<C::ScalarField>> = Vec::new();
|
||||
for (i, running_instance) in running_instances.iter().enumerate() {
|
||||
let mut Ls = running_instance.compute_Ls(ccs, &z_lcccs[i]);
|
||||
vec_Ls.append(&mut Ls);
|
||||
}
|
||||
let mut vec_Q: Vec<VirtualPolynomial<C::ScalarField>> = Vec::new();
|
||||
for z_cccs_i in z_cccs.iter() {
|
||||
let Q = ccs.compute_Q(z_cccs_i, beta);
|
||||
vec_Q.push(Q);
|
||||
}
|
||||
let mut g = vec_Ls[0].clone();
|
||||
) -> Result<VirtualPolynomial<C::ScalarField>, Error>
|
||||
where
|
||||
C::ScalarField: PrimeField,
|
||||
{
|
||||
assert_eq!(running_instances.len(), z_lcccs.len());
|
||||
|
||||
// note: the following two loops can be integrated in the previous two loops, but left
|
||||
// separated for clarity in the PoC implementation.
|
||||
for (j, L_j) in vec_Ls.iter_mut().enumerate().skip(1) {
|
||||
let gamma_j = gamma.pow([j as u64]);
|
||||
L_j.scalar_mul(&gamma_j);
|
||||
g = g.add(L_j);
|
||||
let mut g = VirtualPolynomial::<C::ScalarField>::new(ccs.s);
|
||||
|
||||
let mu = z_lcccs.len();
|
||||
let nu = z_cccs.len();
|
||||
|
||||
let mut gamma_pow = C::ScalarField::one();
|
||||
for i in 0..mu {
|
||||
// L_j
|
||||
let eq_rx = build_eq_x_r_vec(&running_instances[i].r_x)?;
|
||||
let eq_rx_mle = dense_vec_to_dense_mle(ccs.s, &eq_rx);
|
||||
for M_j in ccs.M.iter() {
|
||||
let mut L_i_j = vec![dense_vec_to_dense_mle(
|
||||
ccs.s,
|
||||
&mat_vec_mul(M_j, &z_lcccs[i])?,
|
||||
)];
|
||||
L_i_j.push(eq_rx_mle.clone());
|
||||
g.add_mle_list(L_i_j.iter().map(|v| Arc::new(v.clone())), gamma_pow)?;
|
||||
gamma_pow *= gamma;
|
||||
}
|
||||
}
|
||||
for (i, Q_i) in vec_Q.iter_mut().enumerate() {
|
||||
let gamma_mut_i = gamma.pow([(mu * ccs.t + i) as u64]);
|
||||
Q_i.scalar_mul(&gamma_mut_i);
|
||||
g = g.add(Q_i);
|
||||
|
||||
let eq_beta = build_eq_x_r_vec(beta)?;
|
||||
let eq_beta_mle = dense_vec_to_dense_mle(ccs.s, &eq_beta);
|
||||
|
||||
#[allow(clippy::needless_range_loop)]
|
||||
for k in 0..nu {
|
||||
// Q_k
|
||||
for i in 0..ccs.q {
|
||||
let mut Q_k = vec![];
|
||||
for &j in ccs.S[i].iter() {
|
||||
Q_k.push(dense_vec_to_dense_mle(
|
||||
ccs.s,
|
||||
&mat_vec_mul(&ccs.M[j], &z_cccs[k])?,
|
||||
));
|
||||
}
|
||||
Q_k.push(eq_beta_mle.clone());
|
||||
g.add_mle_list(
|
||||
Q_k.iter().map(|v| Arc::new(v.clone())),
|
||||
ccs.c[i] * gamma_pow,
|
||||
)?;
|
||||
}
|
||||
gamma_pow *= gamma;
|
||||
}
|
||||
g
|
||||
|
||||
Ok(g)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
|
||||
use ark_ff::Field;
|
||||
use ark_pallas::{Fr, Projective};
|
||||
use ark_std::test_rng;
|
||||
use ark_std::One;
|
||||
use ark_std::UniformRand;
|
||||
use ark_std::Zero;
|
||||
|
||||
use super::*;
|
||||
use crate::ccs::tests::{get_test_ccs, get_test_z};
|
||||
use crate::commitment::{pedersen::Pedersen, CommitmentScheme};
|
||||
use crate::folding::hypernova::lcccs::tests::compute_Ls;
|
||||
use crate::utils::hypercube::BooleanHypercube;
|
||||
use crate::utils::mle::matrix_to_dense_mle;
|
||||
use crate::utils::multilinear_polynomial::tests::fix_last_variables;
|
||||
use crate::utils::virtual_polynomial::eq_eval;
|
||||
|
||||
#[test]
|
||||
fn test_compute_sum_Mz_over_boolean_hypercube() {
|
||||
let ccs = get_test_ccs::<Fr>();
|
||||
let z = get_test_z(3);
|
||||
ccs.check_relation(&z).unwrap();
|
||||
let z_mle = dense_vec_to_mle(ccs.s_prime, &z);
|
||||
|
||||
// check that evaluating over all the values x over the boolean hypercube, the result of
|
||||
// the next for loop is equal to 0
|
||||
for x in BooleanHypercube::new(ccs.s) {
|
||||
let mut r = Fr::zero();
|
||||
for i in 0..ccs.q {
|
||||
let mut Sj_prod = Fr::one();
|
||||
for j in ccs.S[i].clone() {
|
||||
let M_j = matrix_to_mle(ccs.M[j].clone());
|
||||
let sum_Mz = compute_sum_Mz(M_j, &z_mle, ccs.s_prime);
|
||||
let sum_Mz_x = sum_Mz.evaluate(&x).unwrap();
|
||||
Sj_prod *= sum_Mz_x;
|
||||
}
|
||||
r += Sj_prod * ccs.c[i];
|
||||
}
|
||||
assert_eq!(r, Fr::zero());
|
||||
}
|
||||
}
|
||||
|
||||
/// Given M(x,y) matrix and a random field element `r`, test that ~M(r,y) is is an s'-variable polynomial which
|
||||
/// compresses every column j of the M(x,y) matrix by performing a random linear combination between the elements
|
||||
/// of the column and the values eq_i(r) where i is the row of that element
|
||||
@@ -238,7 +203,7 @@ pub mod tests {
|
||||
let ccs = get_test_ccs::<Fr>();
|
||||
|
||||
let M = ccs.M[0].clone().to_dense();
|
||||
let M_mle = matrix_to_mle(ccs.M[0].clone());
|
||||
let M_mle = matrix_to_dense_mle(ccs.M[0].clone());
|
||||
|
||||
// Fix the polynomial ~M(r,y)
|
||||
let r: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
@@ -259,7 +224,7 @@ pub mod tests {
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_sigmas_and_thetas() {
|
||||
fn test_compute_sigmas_thetas() {
|
||||
let ccs = get_test_ccs();
|
||||
let z1 = get_test_z(3);
|
||||
let z2 = get_test_z(4);
|
||||
@@ -277,7 +242,7 @@ pub mod tests {
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
|
||||
let sigmas_thetas =
|
||||
compute_sigmas_and_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime);
|
||||
compute_sigmas_thetas(&ccs, &[z1.clone()], &[z2.clone()], &r_x_prime).unwrap();
|
||||
|
||||
let g = compute_g(
|
||||
&ccs,
|
||||
@@ -286,7 +251,8 @@ pub mod tests {
|
||||
&[z2.clone()],
|
||||
gamma,
|
||||
&beta,
|
||||
);
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// we expect g(r_x_prime) to be equal to:
|
||||
// c = (sum gamma^j * e1 * sigma_j) + gamma^{t+1} * e2 * sum c_i * prod theta_j
|
||||
@@ -299,19 +265,22 @@ pub mod tests {
|
||||
&beta,
|
||||
&vec![lcccs_instance.r_x],
|
||||
&r_x_prime,
|
||||
);
|
||||
)
|
||||
.unwrap();
|
||||
assert_eq!(c, expected_c);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_compute_g() {
|
||||
let ccs = get_test_ccs();
|
||||
let mut rng = test_rng();
|
||||
|
||||
// generate test CCS & z vectors
|
||||
let ccs: CCS<Fr> = get_test_ccs();
|
||||
let z1 = get_test_z(3);
|
||||
let z2 = get_test_z(4);
|
||||
ccs.check_relation(&z1).unwrap();
|
||||
ccs.check_relation(&z2).unwrap();
|
||||
|
||||
let mut rng = test_rng(); // TMP
|
||||
let gamma: Fr = Fr::rand(&mut rng);
|
||||
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
|
||||
|
||||
@@ -320,12 +289,6 @@ pub mod tests {
|
||||
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
||||
let (lcccs_instance, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z1).unwrap();
|
||||
|
||||
let mut sum_v_j_gamma = Fr::zero();
|
||||
for j in 0..lcccs_instance.v.len() {
|
||||
let gamma_j = gamma.pow([j as u64]);
|
||||
sum_v_j_gamma += lcccs_instance.v[j] * gamma_j;
|
||||
}
|
||||
|
||||
// Compute g(x) with that r_x
|
||||
let g = compute_g::<Projective>(
|
||||
&ccs,
|
||||
@@ -334,7 +297,8 @@ pub mod tests {
|
||||
&[z2.clone()],
|
||||
gamma,
|
||||
&beta,
|
||||
);
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// evaluate g(x) over x \in {0,1}^s
|
||||
let mut g_on_bhc = Fr::zero();
|
||||
@@ -342,9 +306,22 @@ pub mod tests {
|
||||
g_on_bhc += g.evaluate(&x).unwrap();
|
||||
}
|
||||
|
||||
// Q(x) over bhc is assumed to be zero, as checked in the test 'test_compute_Q'
|
||||
assert_ne!(g_on_bhc, Fr::zero());
|
||||
|
||||
let mut sum_v_j_gamma = Fr::zero();
|
||||
for j in 0..lcccs_instance.v.len() {
|
||||
let gamma_j = gamma.pow([j as u64]);
|
||||
sum_v_j_gamma += lcccs_instance.v[j] * gamma_j;
|
||||
}
|
||||
|
||||
// evaluating g(x) over the boolean hypercube should give the same result as evaluating the
|
||||
// sum of gamma^j * v_j over j \in [t]
|
||||
assert_eq!(g_on_bhc, sum_v_j_gamma);
|
||||
|
||||
// evaluate sum_{j \in [t]} (gamma^j * Lj(x)) over x \in {0,1}^s
|
||||
let mut sum_Lj_on_bhc = Fr::zero();
|
||||
let vec_L = lcccs_instance.compute_Ls(&ccs, &z1);
|
||||
let vec_L = compute_Ls(&ccs, &lcccs_instance, &z1);
|
||||
for x in BooleanHypercube::new(ccs.s) {
|
||||
for (j, Lj) in vec_L.iter().enumerate() {
|
||||
let gamma_j = gamma.pow([j as u64]);
|
||||
@@ -352,15 +329,8 @@ pub mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
// Q(x) over bhc is assumed to be zero, as checked in the test 'test_compute_Q'
|
||||
assert_ne!(g_on_bhc, Fr::zero());
|
||||
|
||||
// evaluating g(x) over the boolean hypercube should give the same result as evaluating the
|
||||
// sum of gamma^j * Lj(x) over the boolean hypercube
|
||||
assert_eq!(g_on_bhc, sum_Lj_on_bhc);
|
||||
|
||||
// evaluating g(x) over the boolean hypercube should give the same result as evaluating the
|
||||
// sum of gamma^j * v_j over j \in [t]
|
||||
assert_eq!(g_on_bhc, sum_v_j_gamma);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@ use super::{CommittedInstance, Witness};
|
||||
use crate::ccs::r1cs::R1CS;
|
||||
use crate::commitment::CommitmentScheme;
|
||||
use crate::transcript::Transcript;
|
||||
use crate::utils::vec::*;
|
||||
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, vec_sub};
|
||||
use crate::Error;
|
||||
|
||||
/// Implements the Non-Interactive Folding Scheme described in section 4 of
|
||||
@@ -32,12 +32,12 @@ where
|
||||
let (A, B, C) = (r1cs.A.clone(), r1cs.B.clone(), r1cs.C.clone());
|
||||
|
||||
// this is parallelizable (for the future)
|
||||
let Az1 = mat_vec_mul_sparse(&A, z1)?;
|
||||
let Bz1 = mat_vec_mul_sparse(&B, z1)?;
|
||||
let Cz1 = mat_vec_mul_sparse(&C, z1)?;
|
||||
let Az2 = mat_vec_mul_sparse(&A, z2)?;
|
||||
let Bz2 = mat_vec_mul_sparse(&B, z2)?;
|
||||
let Cz2 = mat_vec_mul_sparse(&C, z2)?;
|
||||
let Az1 = mat_vec_mul(&A, z1)?;
|
||||
let Bz1 = mat_vec_mul(&B, z1)?;
|
||||
let Cz1 = mat_vec_mul(&C, z1)?;
|
||||
let Az2 = mat_vec_mul(&A, z2)?;
|
||||
let Bz2 = mat_vec_mul(&B, z2)?;
|
||||
let Cz2 = mat_vec_mul(&C, z2)?;
|
||||
|
||||
let Az1_Bz2 = hadamard(&Az1, &Bz2)?;
|
||||
let Az2_Bz1 = hadamard(&Az2, &Bz1)?;
|
||||
|
||||
@@ -370,9 +370,9 @@ fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<De
|
||||
// f(w) in R1CS context. For the moment we use R1CS, in the future we will abstract this with a
|
||||
// trait
|
||||
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &[F]) -> Result<Vec<F>, Error> {
|
||||
let Az = mat_vec_mul_sparse(&r1cs.A, w)?;
|
||||
let Bz = mat_vec_mul_sparse(&r1cs.B, w)?;
|
||||
let Cz = mat_vec_mul_sparse(&r1cs.C, w)?;
|
||||
let Az = mat_vec_mul(&r1cs.A, w)?;
|
||||
let Bz = mat_vec_mul(&r1cs.B, w)?;
|
||||
let Cz = mat_vec_mul(&r1cs.C, w)?;
|
||||
let AzBz = hadamard(&Az, &Bz)?;
|
||||
vec_sub(&AzBz, &Cz)
|
||||
}
|
||||
|
||||
@@ -68,6 +68,8 @@ pub enum Error {
|
||||
NewDomainFail,
|
||||
#[error("The number of folded steps must be greater than 1")]
|
||||
NotEnoughSteps,
|
||||
#[error("Evaluation failed")]
|
||||
EvaluationFail,
|
||||
|
||||
// Commitment errors
|
||||
#[error("Pedersen parameters length is not sufficient (generators.len={0} < vector.len={1} unsatisfied)")]
|
||||
|
||||
@@ -325,12 +325,15 @@ pub fn eq_eval<F: PrimeField>(x: &[F], y: &[F]) -> Result<F, ArithErrors> {
|
||||
/// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
|
||||
/// over r, which is
|
||||
/// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
|
||||
fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Result<Arc<DenseMultilinearExtension<F>>, ArithErrors> {
|
||||
pub fn build_eq_x_r<F: PrimeField>(
|
||||
r: &[F],
|
||||
) -> Result<Arc<DenseMultilinearExtension<F>>, ArithErrors> {
|
||||
let evals = build_eq_x_r_vec(r)?;
|
||||
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), evals);
|
||||
|
||||
Ok(Arc::new(mle))
|
||||
}
|
||||
|
||||
/// This function build the eq(x, r) polynomial for any given r, and output the
|
||||
/// evaluation of eq(x, r) in its vector form.
|
||||
///
|
||||
@@ -338,7 +341,7 @@ fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Result<Arc<DenseMultilinearExtension<
|
||||
/// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
|
||||
/// over r, which is
|
||||
/// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
|
||||
fn build_eq_x_r_vec<F: PrimeField>(r: &[F]) -> Result<Vec<F>, ArithErrors> {
|
||||
pub fn build_eq_x_r_vec<F: PrimeField>(r: &[F]) -> Result<Vec<F>, ArithErrors> {
|
||||
// we build eq(x,r) from its evaluations
|
||||
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
|
||||
// for example, with num_vars = 4, x is a binary vector of 4, then
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
/// Some basic MLE utilities
|
||||
use ark_ff::PrimeField;
|
||||
use ark_poly::DenseMultilinearExtension;
|
||||
use ark_poly::{DenseMultilinearExtension, SparseMultilinearExtension};
|
||||
use ark_std::log2;
|
||||
|
||||
use super::vec::SparseMatrix;
|
||||
@@ -15,7 +15,7 @@ pub fn pad_matrix<F: PrimeField>(m: &SparseMatrix<F>) -> SparseMatrix<F> {
|
||||
|
||||
/// Returns the dense multilinear extension from the given matrix, without modifying the original
|
||||
/// matrix.
|
||||
pub fn matrix_to_mle<F: PrimeField>(matrix: SparseMatrix<F>) -> DenseMultilinearExtension<F> {
|
||||
pub fn matrix_to_dense_mle<F: PrimeField>(matrix: SparseMatrix<F>) -> DenseMultilinearExtension<F> {
|
||||
let n_vars: usize = (log2(matrix.n_rows) + log2(matrix.n_cols)) as usize; // n_vars = s + s'
|
||||
|
||||
// Matrices might need to get padded before turned into an MLE
|
||||
@@ -30,11 +30,11 @@ pub fn matrix_to_mle<F: PrimeField>(matrix: SparseMatrix<F>) -> DenseMultilinear
|
||||
}
|
||||
|
||||
// convert the dense vector into a mle
|
||||
vec_to_mle(n_vars, &v)
|
||||
vec_to_dense_mle(n_vars, &v)
|
||||
}
|
||||
|
||||
/// Takes the n_vars and a dense vector and returns its dense MLE.
|
||||
pub fn vec_to_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> DenseMultilinearExtension<F> {
|
||||
pub fn vec_to_dense_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> DenseMultilinearExtension<F> {
|
||||
let v_padded: Vec<F> = if v.len() != (1 << n_vars) {
|
||||
// pad to 2^n_vars
|
||||
[
|
||||
@@ -50,7 +50,35 @@ pub fn vec_to_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> DenseMultilinearExte
|
||||
DenseMultilinearExtension::<F>::from_evaluations_vec(n_vars, v_padded)
|
||||
}
|
||||
|
||||
pub fn dense_vec_to_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> DenseMultilinearExtension<F> {
|
||||
/// Returns the sparse multilinear extension from the given matrix, without modifying the original
|
||||
/// matrix.
|
||||
pub fn matrix_to_mle<F: PrimeField>(m: SparseMatrix<F>) -> SparseMultilinearExtension<F> {
|
||||
let n_rows = m.n_rows.next_power_of_two();
|
||||
let n_cols = m.n_cols.next_power_of_two();
|
||||
let n_vars: usize = (log2(n_rows) + log2(n_cols)) as usize; // n_vars = s + s'
|
||||
|
||||
// build the sparse vec representing the sparse matrix
|
||||
let mut v: Vec<(usize, F)> = Vec::new();
|
||||
for (i, row) in m.coeffs.iter().enumerate() {
|
||||
for (val, j) in row.iter() {
|
||||
v.push((i * n_cols + j, *val));
|
||||
}
|
||||
}
|
||||
|
||||
// convert the dense vector into a mle
|
||||
vec_to_mle(n_vars, &v)
|
||||
}
|
||||
|
||||
/// Takes the n_vars and a sparse vector and returns its sparse MLE.
|
||||
pub fn vec_to_mle<F: PrimeField>(n_vars: usize, v: &[(usize, F)]) -> SparseMultilinearExtension<F> {
|
||||
SparseMultilinearExtension::<F>::from_evaluations(n_vars, v)
|
||||
}
|
||||
|
||||
/// Takes the n_vars and a dense vector and returns its dense MLE.
|
||||
pub fn dense_vec_to_dense_mle<F: PrimeField>(
|
||||
n_vars: usize,
|
||||
v: &[F],
|
||||
) -> DenseMultilinearExtension<F> {
|
||||
// Pad to 2^n_vars
|
||||
let v_padded: Vec<F> = [
|
||||
v.to_owned(),
|
||||
@@ -62,6 +90,16 @@ pub fn dense_vec_to_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> DenseMultiline
|
||||
DenseMultilinearExtension::<F>::from_evaluations_vec(n_vars, v_padded)
|
||||
}
|
||||
|
||||
/// Takes the n_vars and a dense vector and returns its sparse MLE.
|
||||
pub fn dense_vec_to_mle<F: PrimeField>(n_vars: usize, v: &[F]) -> SparseMultilinearExtension<F> {
|
||||
let v_sparse = v
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, v_i)| (i, *v_i))
|
||||
.collect::<Vec<(usize, F)>>();
|
||||
SparseMultilinearExtension::<F>::from_evaluations(n_vars, &v_sparse)
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
@@ -86,7 +124,8 @@ mod tests {
|
||||
]);
|
||||
|
||||
let A_mle = matrix_to_mle(A);
|
||||
assert_eq!(A_mle.evaluations.len(), 16); // 4x4 matrix, thus 2bit x 2bit, thus 2^4=16 evals
|
||||
assert_eq!(A_mle.evaluations.len(), 15); // 15 non-zero elements
|
||||
assert_eq!(A_mle.num_vars, 4); // 4x4 matrix, thus 2bit x 2bit, thus 2^4=16 evals
|
||||
|
||||
let A = to_F_matrix::<Fr>(vec![
|
||||
vec![2, 3, 4, 4, 1],
|
||||
@@ -96,7 +135,8 @@ mod tests {
|
||||
vec![420, 4, 2, 0, 5],
|
||||
]);
|
||||
let A_mle = matrix_to_mle(A.clone());
|
||||
assert_eq!(A_mle.evaluations.len(), 64); // 5x5 matrix, thus 3bit x 3bit, thus 2^6=64 evals
|
||||
assert_eq!(A_mle.evaluations.len(), 23); // 23 non-zero elements
|
||||
assert_eq!(A_mle.num_vars, 6); // 5x5 matrix, thus 3bit x 3bit, thus 2^6=64 evals
|
||||
|
||||
// check that the A_mle evaluated over the boolean hypercube equals the matrix A_i_j values
|
||||
let bhc = BooleanHypercube::new(A_mle.num_vars);
|
||||
@@ -138,7 +178,7 @@ mod tests {
|
||||
vec![420, 4, 2, 0],
|
||||
]);
|
||||
|
||||
let A_mle = matrix_to_mle(A.clone());
|
||||
let A_mle = matrix_to_dense_mle(A.clone());
|
||||
let A = A.to_dense();
|
||||
let bhc = BooleanHypercube::new(2);
|
||||
for (i, y) in bhc.enumerate() {
|
||||
|
||||
@@ -4,6 +4,7 @@ use ark_poly::{
|
||||
};
|
||||
pub use ark_relations::r1cs::Matrix as R1CSMatrix;
|
||||
use ark_std::cfg_iter;
|
||||
use ark_std::rand::Rng;
|
||||
use rayon::iter::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator};
|
||||
|
||||
use crate::Error;
|
||||
@@ -18,6 +19,23 @@ pub struct SparseMatrix<F: PrimeField> {
|
||||
}
|
||||
|
||||
impl<F: PrimeField> SparseMatrix<F> {
|
||||
pub fn rand<R: Rng>(rng: &mut R, n_rows: usize, n_cols: usize) -> Self {
|
||||
const ZERO_VAL_PROBABILITY: f64 = 0.8f64;
|
||||
|
||||
let dense = (0..n_rows)
|
||||
.map(|_| {
|
||||
(0..n_cols)
|
||||
.map(|_| {
|
||||
if !rng.gen_bool(ZERO_VAL_PROBABILITY) {
|
||||
return F::rand(rng);
|
||||
}
|
||||
F::zero()
|
||||
})
|
||||
.collect::<Vec<F>>()
|
||||
})
|
||||
.collect::<Vec<Vec<F>>>();
|
||||
dense_matrix_to_sparse(dense)
|
||||
}
|
||||
pub fn to_dense(&self) -> Vec<Vec<F>> {
|
||||
let mut r: Vec<Vec<F>> = vec![vec![F::zero(); self.n_cols]; self.n_rows];
|
||||
for (row_i, row) in self.coeffs.iter().enumerate() {
|
||||
@@ -79,7 +97,7 @@ pub fn is_zero_vec<F: PrimeField>(vec: &[F]) -> bool {
|
||||
vec.iter().all(|a| a.is_zero())
|
||||
}
|
||||
|
||||
pub fn mat_vec_mul<F: PrimeField>(M: &[Vec<F>], z: &[F]) -> Result<Vec<F>, Error> {
|
||||
pub fn mat_vec_mul_dense<F: PrimeField>(M: &[Vec<F>], z: &[F]) -> Result<Vec<F>, Error> {
|
||||
if M.is_empty() {
|
||||
return Err(Error::Empty);
|
||||
}
|
||||
@@ -101,7 +119,7 @@ pub fn mat_vec_mul<F: PrimeField>(M: &[Vec<F>], z: &[F]) -> Result<Vec<F>, Error
|
||||
Ok(r)
|
||||
}
|
||||
|
||||
pub fn mat_vec_mul_sparse<F: PrimeField>(M: &SparseMatrix<F>, z: &[F]) -> Result<Vec<F>, Error> {
|
||||
pub fn mat_vec_mul<F: PrimeField>(M: &SparseMatrix<F>, z: &[F]) -> Result<Vec<F>, Error> {
|
||||
if M.n_cols != z.len() {
|
||||
return Err(Error::NotSameLength(
|
||||
"M.n_cols".to_string(),
|
||||
@@ -191,9 +209,12 @@ pub mod tests {
|
||||
])
|
||||
.to_dense();
|
||||
let z = to_F_vec(vec![1, 3, 35, 9, 27, 30]);
|
||||
assert_eq!(mat_vec_mul(&A, &z).unwrap(), to_F_vec(vec![3, 9, 30, 35]));
|
||||
assert_eq!(
|
||||
mat_vec_mul_sparse(&dense_matrix_to_sparse(A), &z).unwrap(),
|
||||
mat_vec_mul_dense(&A, &z).unwrap(),
|
||||
to_F_vec(vec![3, 9, 30, 35])
|
||||
);
|
||||
assert_eq!(
|
||||
mat_vec_mul(&dense_matrix_to_sparse(A), &z).unwrap(),
|
||||
to_F_vec(vec![3, 9, 30, 35])
|
||||
);
|
||||
|
||||
@@ -201,13 +222,10 @@ pub mod tests {
|
||||
let v = to_F_vec(vec![19, 55, 50, 3]);
|
||||
|
||||
assert_eq!(
|
||||
mat_vec_mul(&A.to_dense(), &v).unwrap(),
|
||||
to_F_vec(vec![418, 1158, 979])
|
||||
);
|
||||
assert_eq!(
|
||||
mat_vec_mul_sparse(&A, &v).unwrap(),
|
||||
mat_vec_mul_dense(&A.to_dense(), &v).unwrap(),
|
||||
to_F_vec(vec![418, 1158, 979])
|
||||
);
|
||||
assert_eq!(mat_vec_mul(&A, &v).unwrap(), to_F_vec(vec![418, 1158, 979]));
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
||||
Reference in New Issue
Block a user