Add solidity groth16, kzg10 and final decider verifiers in a dedicated workspace (#70)

* change: Refactor structure into workspace

* chore: Add empty readme

* change: Transform repo into workspace

* add: Create folding-verifier-solidity crate

* add: Include askama.toml for `sol` extension escaper

* add: Jordi's old Groth16 verifier .sol template and adapt it

* tmp: create simple template struct to test

* Update FoldingSchemes trait, fit Nova+CycleFold

- update lib.rs's `FoldingScheme` trait interface
- fit Nova+CycleFold into the `FoldingScheme` trait
- refactor `src/nova/*`

* chore: add serialization assets for testing

Now we include an `assets` folder with a serialized proof & vk for tests

* Add `examples` dir, with Nova's `FoldingScheme` example

* polishing

* expose poseidon_test_config outside tests

* change: Refactor structure into workspace

* chore: Add empty readme

* change: Transform repo into workspace

* add: Create folding-verifier-solidity crate

* add: Include askama.toml for `sol` extension escaper

* add: Jordi's old Groth16 verifier .sol template and adapt it

* tmp: create simple template struct to test

* feat: templating kzg working

* chore: add emv and revm

* feat: start evm file

* chore: add ark-poly-commit

* chore: move `commitment` to `folding-schemes`

* chore: update `.gitignore` to ignore generated contracts

* chore: update template with bn254 lib on it (avoids import), update for loop to account for whitespaces

* refactor: update template with no lib

* feat: add evm deploy code, compile and create kzg verifier

* chore: update `Cargo.toml` to have `folding-schemes` available with verifiers

* feat: start kzg prove and verify with sol

* chore: compute crs from kzg prover

* feat: evm kzg verification passing

* tmp

* change: Swap order of G2 coordinates within the template

* Update way to serialize proof with correct order

* chore: update `Cargo.toml`

* chore: add revm

* chore: add `save_solidity`

* refactor: verifiers in dedicated mod

* refactor: have dedicated `utils` module

* chore: expose modules

* chore: update verifier for kzg

* chore: rename templates

* fix: look for binary using also name of contract

* refactor: generate groth16 proof for sha256 pre-image, generate groth16 template with verifying key

* chore: template renaming

* fix: switch circuit for circuit that simply adds

* feat: generates test data on the fly

* feat: update to latest groth16 verifier

* refactor: rename folder, update `.gitignore`

* chore: update `Cargo.toml`

* chore: update templates extension to indicate that they are templates

* chore: rename templates, both files and structs

* fix: template inheritance working

* feat: template spdx and pragma statements

* feat: decider verifier compiles, update test for kzg10 and groth16 templates

* feat: parameterize which size of the crs should be stored on the contract

* chore: add comment on how the groth16 and kzg10 proofs will be linked together

* chore: cargo clippy run

* chore: cargo clippy tests

* chore: cargo fmt

* refactor: remove unused lifetime parameter

* chore: end merge

* chore: move examples to `folding-schemes` workspace

* get latest main changes

* fix: temp fix clippy warnings, will remove lints once not used in tests only

* fix: cargo clippy lint added on `code_size`

* fix: update path to test circuit and add step for installing solc

* chore: remove `save_solidity` steps

* fix: the borrowed expression implements the required traits

* chore: update `Cargo.toml`

* chore: remove extra `[patch.crates-io]`

* fix: update to patch at the workspace level and add comment explaining this

* refactor: correct `staticcall` with valid input/output sizes and change return syntax for pairing

* refactor: expose modules and remove `dead_code` calls

* chore: update `README.md`, add additional comments on `kzg10` template and update `groth16` template comments

* chore: be clearer on attributions on `kzg10`

---------

Co-authored-by: CPerezz <c.perezbaro@gmail.com>
Co-authored-by: arnaucube <root@arnaucube.com>
This commit is contained in:
Pierre
2024-02-09 08:19:25 +01:00
committed by GitHub
parent 97e973a685
commit 63dbbfe1bc
67 changed files with 1208 additions and 53 deletions

View File

@@ -0,0 +1,567 @@
/// contains [CycleFold](https://eprint.iacr.org/2023/1192.pdf) related circuits
use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
};
use ark_ec::CurveGroup;
use ark_ff::PrimeField;
use ark_r1cs_std::{
alloc::{AllocVar, AllocationMode},
bits::uint8::UInt8,
boolean::Boolean,
eq::EqGadget,
fields::{fp::FpVar, nonnative::NonNativeFieldVar},
groups::GroupOpsBounds,
prelude::CurveVar,
ToBytesGadget,
};
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, Namespace, SynthesisError};
use ark_serialize::CanonicalSerialize;
use ark_std::fmt::Debug;
use ark_std::Zero;
use core::{borrow::Borrow, marker::PhantomData};
use super::circuits::CF2;
use super::CommittedInstance;
use crate::constants::N_BITS_RO;
use crate::Error;
// publi inputs length for the CycleFoldCircuit, |[u_i, U_i, U_{i+1}]|
pub const CF_IO_LEN: usize = 12;
/// CycleFoldCommittedInstanceVar is the CycleFold CommittedInstance representation in the Nova
/// circuit.
#[derive(Debug, Clone)]
pub struct CycleFoldCommittedInstanceVar<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
where
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
_c: PhantomData<C>,
pub cmE: GC,
pub u: NonNativeFieldVar<C::ScalarField, CF2<C>>,
pub cmW: GC,
pub x: Vec<NonNativeFieldVar<C::ScalarField, CF2<C>>>,
}
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CycleFoldCommittedInstanceVar<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
fn new_variable<T: Borrow<CommittedInstance<C>>>(
cs: impl Into<Namespace<CF2<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let cmE = GC::new_variable(cs.clone(), || Ok(val.borrow().cmE), mode)?;
let cmW = GC::new_variable(cs.clone(), || Ok(val.borrow().cmW), mode)?;
let u = NonNativeFieldVar::<C::ScalarField, CF2<C>>::new_variable(
cs.clone(),
|| Ok(val.borrow().u),
mode,
)?;
let x = Vec::<NonNativeFieldVar<C::ScalarField, CF2<C>>>::new_variable(
cs.clone(),
|| Ok(val.borrow().x.clone()),
mode,
)?;
Ok(Self {
_c: PhantomData,
cmE,
u,
cmW,
x,
})
})
}
}
/// CommittedInstanceInCycleFoldVar represents the Nova CommittedInstance in the CycleFold circuit,
/// where the commitments to E and W (cmW and cmW) from the CommittedInstance on the E2,
/// represented as native points, which are folded on the auxiliary curve constraints field (E2::Fr
/// = E1::Fq).
#[derive(Debug, Clone)]
pub struct CommittedInstanceInCycleFoldVar<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
where
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
_c: PhantomData<C>,
pub cmE: GC,
pub cmW: GC,
}
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CommittedInstanceInCycleFoldVar<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
fn new_variable<T: Borrow<CommittedInstance<C>>>(
cs: impl Into<Namespace<CF2<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let cmE = GC::new_variable(cs.clone(), || Ok(val.borrow().cmE), mode)?;
let cmW = GC::new_variable(cs.clone(), || Ok(val.borrow().cmW), mode)?;
Ok(Self {
_c: PhantomData,
cmE,
cmW,
})
})
}
}
/// NIFSinCycleFoldGadget performs the Nova NIFS.V elliptic curve points relation checks in the other
/// curve (natively) following [CycleFold](https://eprint.iacr.org/2023/1192.pdf).
pub struct NIFSinCycleFoldGadget<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
_c: PhantomData<C>,
_gc: PhantomData<GC>,
}
impl<C: CurveGroup, GC: CurveVar<C, CF2<C>>> NIFSinCycleFoldGadget<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
pub fn verify(
r_bits: Vec<Boolean<CF2<C>>>,
cmT: GC,
ci1: CommittedInstanceInCycleFoldVar<C, GC>,
ci2: CommittedInstanceInCycleFoldVar<C, GC>,
ci3: CommittedInstanceInCycleFoldVar<C, GC>,
) -> Result<Boolean<CF2<C>>, SynthesisError> {
// cm(E) check: ci3.cmE == ci1.cmE + r * cmT + r^2 * ci2.cmE
let first_check = ci3.cmE.is_eq(
&((ci2.cmE.scalar_mul_le(r_bits.iter())? + cmT).scalar_mul_le(r_bits.iter())?
+ ci1.cmE),
)?;
// cm(W) check: ci3.cmW == ci1.cmW + r * ci2.cmW
let second_check = ci3
.cmW
.is_eq(&(ci1.cmW + ci2.cmW.scalar_mul_le(r_bits.iter())?))?;
first_check.and(&second_check)
}
}
/// This is the gadget used in the AugmentedFCircuit to verify the CycleFold instances folding,
/// which checks the correct RLC of u,x,cmE,cmW (hence the name containing 'Full', since it checks
/// all the RLC values, not only the native ones). It assumes that ci2.cmE=0, ci2.u=1.
pub struct NIFSFullGadget<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
_c: PhantomData<C>,
_gc: PhantomData<GC>,
}
impl<C: CurveGroup, GC: CurveVar<C, CF2<C>>> NIFSFullGadget<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
pub fn verify(
r_bits: Vec<Boolean<CF2<C>>>,
r_nonnat: NonNativeFieldVar<C::ScalarField, CF2<C>>,
cmT: GC,
// ci1 is assumed to be always with cmE=0, u=1 (checks done previous to this method)
ci1: CycleFoldCommittedInstanceVar<C, GC>,
ci2: CycleFoldCommittedInstanceVar<C, GC>,
ci3: CycleFoldCommittedInstanceVar<C, GC>,
) -> Result<Boolean<CF2<C>>, SynthesisError> {
// cm(E) check: ci3.cmE == ci1.cmE + r * cmT (ci2.cmE=0)
let first_check = ci3
.cmE
.is_eq(&(cmT.scalar_mul_le(r_bits.iter())? + ci1.cmE))?;
// cm(W) check: ci3.cmW == ci1.cmW + r * ci2.cmW
let second_check = ci3
.cmW
.is_eq(&(ci1.cmW + ci2.cmW.scalar_mul_le(r_bits.iter())?))?;
let u_rlc: NonNativeFieldVar<C::ScalarField, CF2<C>> = ci1.u + r_nonnat.clone();
let third_check = u_rlc.is_eq(&ci3.u)?;
// ensure that: ci3.x == ci1.x + r * ci2.x
let x_rlc: Vec<NonNativeFieldVar<C::ScalarField, CF2<C>>> = ci1
.x
.iter()
.zip(ci2.x)
.map(|(a, b)| a + &r_nonnat * &b)
.collect::<Vec<NonNativeFieldVar<C::ScalarField, CF2<C>>>>();
let fourth_check = x_rlc.is_eq(&ci3.x)?;
first_check
.and(&second_check)?
.and(&third_check)?
.and(&fourth_check)
}
}
/// ChallengeGadget computes the RO challenge used for the CycleFold instances NIFS, it contains a
/// rust-native and a in-circuit compatible versions.
pub struct CycleFoldChallengeGadget<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
_c: PhantomData<C>, // Nova's Curve2, the one used for the CycleFold circuit
_gc: PhantomData<GC>,
}
impl<C, GC> CycleFoldChallengeGadget<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
<C as CurveGroup>::BaseField: PrimeField,
<C as CurveGroup>::BaseField: Absorb,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
pub fn get_challenge_native(
poseidon_config: &PoseidonConfig<C::BaseField>,
u_i: CommittedInstance<C>,
U_i: CommittedInstance<C>,
cmT: C,
) -> Result<Vec<bool>, Error> {
let mut sponge = PoseidonSponge::<C::BaseField>::new(poseidon_config);
let u_i_cmE_bytes = point_to_bytes(u_i.cmE);
let u_i_cmW_bytes = point_to_bytes(u_i.cmW);
let U_i_cmE_bytes = point_to_bytes(U_i.cmE);
let U_i_cmW_bytes = point_to_bytes(U_i.cmW);
let cmT_bytes = point_to_bytes(cmT);
let mut u_i_u_bytes = Vec::new();
u_i.u.serialize_uncompressed(&mut u_i_u_bytes)?;
let mut u_i_x_bytes = Vec::new();
u_i.x.serialize_uncompressed(&mut u_i_x_bytes)?;
u_i_x_bytes = u_i_x_bytes[8..].to_vec();
let mut U_i_u_bytes = Vec::new();
U_i.u.serialize_uncompressed(&mut U_i_u_bytes)?;
let mut U_i_x_bytes = Vec::new();
U_i.x.serialize_uncompressed(&mut U_i_x_bytes)?;
U_i_x_bytes = U_i_x_bytes[8..].to_vec();
let input: Vec<u8> = [
u_i_cmE_bytes,
u_i_u_bytes,
u_i_cmW_bytes,
u_i_x_bytes,
U_i_cmE_bytes,
U_i_u_bytes,
U_i_cmW_bytes,
U_i_x_bytes,
cmT_bytes,
]
.concat();
sponge.absorb(&input);
let bits = sponge.squeeze_bits(N_BITS_RO);
Ok(bits)
}
// compatible with the native get_challenge_native
pub fn get_challenge_gadget(
cs: ConstraintSystemRef<C::BaseField>,
poseidon_config: &PoseidonConfig<C::BaseField>,
u_i: CycleFoldCommittedInstanceVar<C, GC>,
U_i: CycleFoldCommittedInstanceVar<C, GC>,
cmT: GC,
) -> Result<Vec<Boolean<C::BaseField>>, SynthesisError> {
let mut sponge = PoseidonSpongeVar::<C::BaseField>::new(cs, poseidon_config);
let u_i_x_bytes: Vec<UInt8<CF2<C>>> = u_i
.x
.iter()
.flat_map(|e| e.to_bytes().unwrap_or(vec![]))
.collect::<Vec<UInt8<CF2<C>>>>();
let U_i_x_bytes: Vec<UInt8<CF2<C>>> = U_i
.x
.iter()
.flat_map(|e| e.to_bytes().unwrap_or(vec![]))
.collect::<Vec<UInt8<CF2<C>>>>();
let input: Vec<UInt8<CF2<C>>> = [
u_i.cmE.to_bytes()?,
u_i.u.to_bytes()?,
u_i.cmW.to_bytes()?,
u_i_x_bytes,
U_i.cmE.to_bytes()?,
U_i.u.to_bytes()?,
U_i.cmW.to_bytes()?,
U_i_x_bytes,
cmT.to_bytes()?,
// TODO instead of bytes, use field elements, but needs x,y coordinates from
// u_i.{cmE,cmW}, U_i.{cmE,cmW}, cmT. Depends exposing x,y coordinates of GC. Issue to
// keep track of this:
// https://github.com/privacy-scaling-explorations/folding-schemes/issues/44
]
.concat();
sponge.absorb(&input)?;
let bits = sponge.squeeze_bits(N_BITS_RO)?;
Ok(bits)
}
}
/// returns the bytes being compatible with the ark_r1cs_std `.to_bytes` approach
fn point_to_bytes<C: CurveGroup>(p: C) -> Vec<u8> {
let l = p.uncompressed_size();
let mut b = Vec::new();
p.serialize_uncompressed(&mut b).unwrap();
b[l - 1] = 0;
if p.is_zero() {
b[l / 2] = 1;
b[l - 1] = 1;
}
b
}
/// CycleFoldCircuit contains the constraints that check the correct fold of the committed
/// instances from Curve1. Namely, it checks the random linear combinations of the elliptic curve
/// (Curve1) points of u_i, U_i leading to U_{i+1}
#[derive(Debug, Clone)]
pub struct CycleFoldCircuit<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
pub _gc: PhantomData<GC>,
pub r_bits: Option<Vec<bool>>,
pub cmT: Option<C>,
// u_i,U_i,U_i1 are the nova instances from AugmentedFCircuit which will be (their elliptic
// curve points) checked natively in CycleFoldCircuit
pub u_i: Option<CommittedInstance<C>>,
pub U_i: Option<CommittedInstance<C>>,
pub U_i1: Option<CommittedInstance<C>>,
pub x: Option<Vec<CF2<C>>>, // public inputs (cf_u_{i+1}.x)
}
impl<C: CurveGroup, GC: CurveVar<C, CF2<C>>> CycleFoldCircuit<C, GC> {
pub fn empty() -> Self {
Self {
_gc: PhantomData,
r_bits: None,
cmT: None,
u_i: None,
U_i: None,
U_i1: None,
x: None,
}
}
}
impl<C, GC> ConstraintSynthesizer<CF2<C>> for CycleFoldCircuit<C, GC>
where
C: CurveGroup,
GC: CurveVar<C, CF2<C>>,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
{
fn generate_constraints(self, cs: ConstraintSystemRef<CF2<C>>) -> Result<(), SynthesisError> {
let r_bits: Vec<Boolean<CF2<C>>> = Vec::new_witness(cs.clone(), || {
Ok(self.r_bits.unwrap_or(vec![false; N_BITS_RO]))
})?;
let cmT = GC::new_witness(cs.clone(), || Ok(self.cmT.unwrap_or(C::zero())))?;
let u_dummy_native = CommittedInstance::<C>::dummy(1);
let u_i = CommittedInstanceInCycleFoldVar::<C, GC>::new_witness(cs.clone(), || {
Ok(self.u_i.unwrap_or(u_dummy_native.clone()))
})?;
let U_i = CommittedInstanceInCycleFoldVar::<C, GC>::new_witness(cs.clone(), || {
Ok(self.U_i.unwrap_or(u_dummy_native.clone()))
})?;
let U_i1 = CommittedInstanceInCycleFoldVar::<C, GC>::new_witness(cs.clone(), || {
Ok(self.U_i1.unwrap_or(u_dummy_native.clone()))
})?;
let _x = Vec::<FpVar<CF2<C>>>::new_input(cs.clone(), || {
Ok(self.x.unwrap_or(vec![CF2::<C>::zero(); CF_IO_LEN]))
})?;
#[cfg(test)]
assert_eq!(_x.len(), CF_IO_LEN); // non-constrained sanity check
// fold the original Nova instances natively in CycleFold
let v =
NIFSinCycleFoldGadget::<C, GC>::verify(r_bits.clone(), cmT, u_i.clone(), U_i, U_i1)?;
v.enforce_equal(&Boolean::TRUE)?;
// check that x == [u_i, U_i, U_{i+1}], check that the cmW & cmW from u_i, U_i, U_{i+1} in
// the CycleFoldCircuit are the sames used in the public inputs 'x', which come from the
// AugmentedFCircuit.
// TODO: Issue to keep track of this: https://github.com/privacy-scaling-explorations/folding-schemes/issues/44
// and https://github.com/privacy-scaling-explorations/folding-schemes/issues/48
Ok(())
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_ff::BigInteger;
use ark_pallas::{constraints::GVar, Fq, Fr, Projective};
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::UniformRand;
use crate::folding::nova::nifs::tests::prepare_simple_fold_inputs;
use crate::transcript::poseidon::poseidon_test_config;
#[test]
fn test_committed_instance_cyclefold_var() {
let mut rng = ark_std::test_rng();
let ci = CommittedInstance::<Projective> {
cmE: Projective::rand(&mut rng),
u: Fr::rand(&mut rng),
cmW: Projective::rand(&mut rng),
x: vec![Fr::rand(&mut rng); 1],
};
// check the instantiation of the CycleFold side:
let cs = ConstraintSystem::<Fq>::new_ref();
let ciVar =
CommittedInstanceInCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci.clone())
})
.unwrap();
assert_eq!(ciVar.cmE.value().unwrap(), ci.cmE);
assert_eq!(ciVar.cmW.value().unwrap(), ci.cmW);
}
#[test]
fn test_nifs_gadget_cyclefold() {
let (_, _, _, _, ci1, _, ci2, _, ci3, _, cmT, r_bits, _) = prepare_simple_fold_inputs();
// cs is the Constraint System on the Curve Cycle auxiliary curve constraints field
// (E2::Fr)
let cs = ConstraintSystem::<Fq>::new_ref();
let r_bitsVar = Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(r_bits)).unwrap();
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
let ci1Var =
CommittedInstanceInCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci1.clone())
})
.unwrap();
let ci2Var =
CommittedInstanceInCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci2.clone())
})
.unwrap();
let ci3Var =
CommittedInstanceInCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci3.clone())
})
.unwrap();
let nifs_cf_check = NIFSinCycleFoldGadget::<Projective, GVar>::verify(
r_bitsVar, cmTVar, ci1Var, ci2Var, ci3Var,
)
.unwrap();
nifs_cf_check.enforce_equal(&Boolean::<Fq>::TRUE).unwrap();
assert!(cs.is_satisfied().unwrap());
dbg!(cs.num_constraints());
}
#[test]
fn test_nifs_full_gadget() {
let (_, _, _, _, ci1, _, ci2, _, ci3, _, cmT, r_bits, r_Fr) = prepare_simple_fold_inputs();
let cs = ConstraintSystem::<Fq>::new_ref();
let r_nonnatVar =
NonNativeFieldVar::<Fr, Fq>::new_witness(cs.clone(), || Ok(r_Fr)).unwrap();
let r_bitsVar = Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(r_bits)).unwrap();
let ci1Var =
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci1.clone())
})
.unwrap();
let ci2Var =
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci2.clone())
})
.unwrap();
let ci3Var =
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(ci3.clone())
})
.unwrap();
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
let nifs_check = NIFSFullGadget::<Projective, GVar>::verify(
r_bitsVar,
r_nonnatVar,
cmTVar,
ci1Var,
ci2Var,
ci3Var,
)
.unwrap();
nifs_check.enforce_equal(&Boolean::<Fq>::TRUE).unwrap();
assert!(cs.is_satisfied().unwrap());
dbg!(cs.num_constraints());
}
#[test]
fn test_cyclefold_challenge_gadget() {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fq>();
let u_i = CommittedInstance::<Projective> {
cmE: Projective::zero(), // zero on purpose, so we test also the zero point case
u: Fr::zero(),
cmW: Projective::rand(&mut rng),
x: std::iter::repeat_with(|| Fr::rand(&mut rng))
.take(CF_IO_LEN)
.collect(),
};
let U_i = CommittedInstance::<Projective> {
cmE: Projective::rand(&mut rng),
u: Fr::rand(&mut rng),
cmW: Projective::rand(&mut rng),
x: std::iter::repeat_with(|| Fr::rand(&mut rng))
.take(CF_IO_LEN)
.collect(),
};
let cmT = Projective::rand(&mut rng);
// compute the challenge natively
let r_bits = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_native(
&poseidon_config,
u_i.clone(),
U_i.clone(),
cmT,
)
.unwrap();
let cs = ConstraintSystem::<Fq>::new_ref();
let u_iVar =
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(u_i.clone())
})
.unwrap();
let U_iVar =
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
Ok(U_i.clone())
})
.unwrap();
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
let r_bitsVar = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_gadget(
cs.clone(),
&poseidon_config,
u_iVar,
U_iVar,
cmTVar,
)
.unwrap();
assert!(cs.is_satisfied().unwrap());
// check that the natively computed and in-circuit computed hashes match
let rVar = Boolean::le_bits_to_fp_var(&r_bitsVar).unwrap();
let r = Fq::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
assert_eq!(rVar.value().unwrap(), r);
assert_eq!(r_bitsVar.value().unwrap(), r_bits);
}
}