Browse Source

Add external inputs logic to F function/circuit. Add an example of usage with external inputs too. (#78)

* Add external inputs logic to F function/circuit. Add an example of usage with external inputs too.

* Add examples run into CI
main
arnaucube 9 months ago
committed by GitHub
parent
commit
a4905c8a06
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
10 changed files with 287 additions and 37 deletions
  1. +13
    -0
      .github/workflows/ci.yml
  2. +213
    -0
      folding-schemes/examples/external_inputs.rs
  3. +8
    -7
      folding-schemes/examples/multi_inputs.rs
  4. +8
    -7
      folding-schemes/examples/sha256.rs
  5. +1
    -1
      folding-schemes/src/folding/hypernova/lcccs.rs
  6. +6
    -1
      folding-schemes/src/folding/nova/circuits.rs
  7. +3
    -3
      folding-schemes/src/folding/nova/decider_eth_circuit.rs
  8. +15
    -6
      folding-schemes/src/folding/nova/mod.rs
  9. +18
    -12
      folding-schemes/src/frontend/mod.rs
  10. +2
    -0
      folding-schemes/src/lib.rs

+ 13
- 0
.github/workflows/ci.yml

@ -72,6 +72,18 @@ jobs:
run: | run: |
cargo test --doc cargo test --doc
examples:
if: github.event.pull_request.draft == false
name: Run examples & examples tests
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions-rs/toolchain@v1
- name: Run examples tests
run: cargo test --examples
- name: Run examples
run: cargo run --release --example 2>&1 | grep -E '^ ' | xargs -n1 cargo run --release --example
fmt: fmt:
if: github.event.pull_request.draft == false if: github.event.pull_request.draft == false
name: Rustfmt name: Rustfmt
@ -104,6 +116,7 @@ jobs:
args: --all-targets --all-features -- -D warnings args: --all-targets --all-features -- -D warnings
typos: typos:
if: github.event.pull_request.draft == false
name: Spell Check with Typos name: Spell Check with Typos
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:

+ 213
- 0
folding-schemes/examples/external_inputs.rs

@ -0,0 +1,213 @@
#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_crypto_primitives::{
crh::{
poseidon::constraints::{CRHGadget, CRHParametersVar},
poseidon::CRH,
CRHScheme, CRHSchemeGadget,
},
sponge::{poseidon::PoseidonConfig, Absorb},
};
use ark_ff::PrimeField;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_r1cs_std::fields::fp::FpVar;
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::Zero;
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use core::marker::PhantomData;
use std::time::Instant;
use folding_schemes::commitment::pedersen::Pedersen;
use folding_schemes::folding::nova::Nova;
use folding_schemes::frontend::FCircuit;
use folding_schemes::{Error, FoldingScheme};
mod utils;
use folding_schemes::transcript::poseidon::poseidon_test_config;
use utils::test_nova_setup;
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which
/// we get by applying the step.
///
/// In this example we set the state to be the previous state together with an external input, and
/// the new state is an array which contains the new state and a zero which will be ignored.
///
/// This is useful for example if we want to fold multiple verifications of signatures, where the
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
/// keep things simpler, the following example does not verify signatures but does a similar
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
/// together with an external input (w_i).
///
/// w_1 w_2 w_3 w_4
/// │ │ │ │
/// ▼ ▼ ▼ ▼
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
/// ─────►│F├────►│F├────►│F├────►│F├────►
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
///
///
/// where each F is:
/// w_i
/// │ ┌────────────────────┐
/// │ │FCircuit │
/// │ │ │
/// └────►│ h =Hash(z_i[0],w_i)│
/// │ │ =Hash(v, w_i) │
/// ────────►│ │ ├───────►
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
/// │ │
/// └────────────────────┘
///
/// where each w_i value is set at the external_inputs array.
///
/// The last state z_i is used together with the external input w_i as inputs to compute the new
/// state z_{i+1}.
/// The function F will output the new state in an array of two elements, where the second element
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0].
#[derive(Clone, Debug)]
pub struct ExternalInputsCircuits<F: PrimeField>
where
F: Absorb,
{
_f: PhantomData<F>,
poseidon_config: PoseidonConfig<F>,
external_inputs: Vec<F>,
}
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
where
F: Absorb,
{
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs
fn new(params: Self::Params) -> Self {
Self {
_f: PhantomData,
poseidon_config: params.0,
external_inputs: params.1,
}
}
fn state_len(&self) -> usize {
2
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
Ok(vec![h, F::zero()])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let crh_params =
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
let external_inputVar =
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
Ok(vec![h, FpVar::<F>::zero()])
}
}
/// cargo test --example external_inputs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::R1CSVar;
use ark_relations::r1cs::ConstraintSystem;
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let poseidon_config = poseidon_test_config::<Fr>();
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)]));
let z_i = vec![Fr::from(1_u32), Fr::zero()];
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example external_inputs
fn main() {
let num_steps = 5;
let initial_state = vec![Fr::from(1_u32), Fr::zero()];
// set the external inputs to be used at each folding step
let external_inputs = vec![
Fr::from(3_u32),
Fr::from(33_u32),
Fr::from(73_u32),
Fr::from(103_u32),
Fr::from(125_u32),
];
assert_eq!(external_inputs.len(), num_steps);
let poseidon_config = poseidon_test_config::<Fr>();
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs));
println!("Prepare Nova ProverParams & VerifierParams");
let (prover_params, verifier_params) =
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
ExternalInputsCircuits<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
println!("Initialize FoldingScheme");
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step().unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
println!(
"state at last step (after {} iterations): {:?}",
num_steps,
folding_scheme.state()
);
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
NOVA::verify(
verifier_params,
initial_state.clone(),
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}

+ 8
- 7
folding-schemes/examples/multi_inputs.rs

@ -35,13 +35,13 @@ impl FCircuit for MultiInputsFCircuit {
fn new(_params: Self::Params) -> Self { fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData } Self { _f: PhantomData }
} }
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
5 5
} }
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new /// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1} /// z_{i+1}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let a = z_i[0] + F::from(4_u32); let a = z_i[0] + F::from(4_u32);
let b = z_i[1] + F::from(40_u32); let b = z_i[1] + F::from(40_u32);
let c = z_i[2] * F::from(4_u32); let c = z_i[2] * F::from(4_u32);
@ -53,8 +53,9 @@ impl FCircuit for MultiInputsFCircuit {
/// generates the constraints for the step of F for the given z_i /// generates the constraints for the step of F for the given z_i
fn generate_step_constraints( fn generate_step_constraints(
self,
&self,
cs: ConstraintSystemRef<F>, cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>, z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> { ) -> Result<Vec<FpVar<F>>, SynthesisError> {
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?; let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
@ -74,12 +75,12 @@ impl FCircuit for MultiInputsFCircuit {
#[cfg(test)] #[cfg(test)]
pub mod tests { pub mod tests {
use super::*; use super::*;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem; use ark_relations::r1cs::ConstraintSystem;
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit // test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
#[test] #[test]
fn test_add_f_circuit() {
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = MultiInputsFCircuit::<Fr>::new(()); let circuit = MultiInputsFCircuit::<Fr>::new(());
@ -91,11 +92,11 @@ pub mod tests {
Fr::from(1_u32), Fr::from(1_u32),
]; ];
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap(); let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), z_iVar.clone())
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap(); .unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1); assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
} }

+ 8
- 7
folding-schemes/examples/sha256.rs

@ -41,13 +41,13 @@ impl FCircuit for Sha256FCircuit {
fn new(_params: Self::Params) -> Self { fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData } Self { _f: PhantomData }
} }
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
1 1
} }
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new /// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1} /// z_{i+1}
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap(); let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
let out: Vec<F> = out_bytes.to_field_elements().unwrap(); let out: Vec<F> = out_bytes.to_field_elements().unwrap();
@ -56,8 +56,9 @@ impl FCircuit for Sha256FCircuit {
/// generates the constraints for the step of F for the given z_i /// generates the constraints for the step of F for the given z_i
fn generate_step_constraints( fn generate_step_constraints(
self,
&self,
_cs: ConstraintSystemRef<F>, _cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>, z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> { ) -> Result<Vec<FpVar<F>>, SynthesisError> {
let unit_var = UnitVar::default(); let unit_var = UnitVar::default();
@ -71,22 +72,22 @@ impl FCircuit for Sha256FCircuit {
#[cfg(test)] #[cfg(test)]
pub mod tests { pub mod tests {
use super::*; use super::*;
use ark_r1cs_std::alloc::AllocVar;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem; use ark_relations::r1cs::ConstraintSystem;
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit // test to check that the Sha256FCircuit computes the same values inside and outside the circuit
#[test] #[test]
fn test_sha256_f_circuit() {
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref(); let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = Sha256FCircuit::<Fr>::new(()); let circuit = Sha256FCircuit::<Fr>::new(());
let z_i = vec![Fr::from(1_u32)]; let z_i = vec![Fr::from(1_u32)];
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap(); let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), z_iVar.clone())
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
.unwrap(); .unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1); assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
} }

+ 1
- 1
folding-schemes/src/folding/hypernova/lcccs.rs

@ -96,7 +96,7 @@ impl LCCCS {
w: &Witness<C::ScalarField>, w: &Witness<C::ScalarField>,
) -> Result<(), Error> { ) -> Result<(), Error> {
// check that C is the commitment of w. Notice that this is not verifying a Pedersen // check that C is the commitment of w. Notice that this is not verifying a Pedersen
// opening, but checking that the Commmitment comes from committing to the witness.
// opening, but checking that the Commitment comes from committing to the witness.
if self.C != Pedersen::<C>::commit(pedersen_params, &w.w, &w.r_w)? { if self.C != Pedersen::<C>::commit(pedersen_params, &w.w, &w.r_w)? {
return Err(Error::NotSatisfied); return Err(Error::NotSatisfied);
} }

+ 6
- 1
folding-schemes/src/folding/nova/circuits.rs

@ -245,6 +245,7 @@ pub struct AugmentedFCircuit<
pub _gc2: PhantomData<GC2>, pub _gc2: PhantomData<GC2>,
pub poseidon_config: PoseidonConfig<CF1<C1>>, pub poseidon_config: PoseidonConfig<CF1<C1>>,
pub i: Option<CF1<C1>>, pub i: Option<CF1<C1>>,
pub i_usize: Option<usize>,
pub z_0: Option<Vec<C1::ScalarField>>, pub z_0: Option<Vec<C1::ScalarField>>,
pub z_i: Option<Vec<C1::ScalarField>>, pub z_i: Option<Vec<C1::ScalarField>>,
pub u_i: Option<CommittedInstance<C1>>, pub u_i: Option<CommittedInstance<C1>>,
@ -278,6 +279,7 @@ where
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: poseidon_config.clone(), poseidon_config: poseidon_config.clone(),
i: None, i: None,
i_usize: None,
z_0: None, z_0: None,
z_i: None, z_i: None,
u_i: None, u_i: None,
@ -349,7 +351,10 @@ where
)?; )?;
// get z_{i+1} from the F circuit // get z_{i+1} from the F circuit
let z_i1 = self.F.generate_step_constraints(cs.clone(), z_i.clone())?;
let i_usize = self.i_usize.unwrap_or(0);
let z_i1 = self
.F
.generate_step_constraints(cs.clone(), i_usize, z_i.clone())?;
let zero = FpVar::<CF1<C1>>::new_constant(cs.clone(), CF1::<C1>::zero())?; let zero = FpVar::<CF1<C1>>::new_constant(cs.clone(), CF1::<C1>::zero())?;
let is_not_basecase = i.is_neq(&zero)?; let is_not_basecase = i.is_neq(&zero)?;

+ 3
- 3
folding-schemes/src/folding/nova/decider_eth_circuit.rs

@ -508,7 +508,7 @@ pub mod tests {
let circuit = WrapperCircuit::<Fr, CubicFCircuit<Fr>> { let circuit = WrapperCircuit::<Fr, CubicFCircuit<Fr>> {
FC: cubic_circuit, FC: cubic_circuit,
z_i: Some(z_i.clone()), z_i: Some(z_i.clone()),
z_i1: Some(cubic_circuit.step_native(z_i).unwrap()),
z_i1: Some(cubic_circuit.step_native(0, z_i).unwrap()),
}; };
test_relaxed_r1cs_gadget(circuit); test_relaxed_r1cs_gadget(circuit);
@ -551,7 +551,7 @@ pub mod tests {
let circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> { let circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> {
FC: custom_circuit, FC: custom_circuit,
z_i: Some(z_i.clone()), z_i: Some(z_i.clone()),
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
}; };
test_relaxed_r1cs_gadget(circuit); test_relaxed_r1cs_gadget(circuit);
} }
@ -567,7 +567,7 @@ pub mod tests {
let circuit = WrapperCircuit::<Fq, CustomFCircuit<Fq>> { let circuit = WrapperCircuit::<Fq, CustomFCircuit<Fq>> {
FC: custom_circuit, FC: custom_circuit,
z_i: Some(z_i.clone()), z_i: Some(z_i.clone()),
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
}; };
circuit.generate_constraints(cs.clone()).unwrap(); circuit.generate_constraints(cs.clone()).unwrap();
cs.finalize(); cs.finalize();

+ 15
- 6
folding-schemes/src/folding/nova/mod.rs

@ -227,7 +227,7 @@ where
let (prover_params, F_circuit) = prep_param; let (prover_params, F_circuit) = prep_param;
let (r1cs, cf_r1cs) = let (r1cs, cf_r1cs) =
get_r1cs::<C1, GC1, C2, GC2, FC>(&prover_params.poseidon_config, *F_circuit)?;
get_r1cs::<C1, GC1, C2, GC2, FC>(&prover_params.poseidon_config, F_circuit.clone())?;
let verifier_params = VerifierParams::<C1, C2> { let verifier_params = VerifierParams::<C1, C2> {
poseidon_config: prover_params.poseidon_config.clone(), poseidon_config: prover_params.poseidon_config.clone(),
@ -244,7 +244,7 @@ where
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref(); let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
let augmented_F_circuit = let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, F);
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, F.clone());
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty(); let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
augmented_F_circuit.generate_constraints(cs.clone())?; augmented_F_circuit.generate_constraints(cs.clone())?;
@ -292,7 +292,14 @@ where
let cfW_circuit: CycleFoldCircuit<C1, GC1>; let cfW_circuit: CycleFoldCircuit<C1, GC1>;
let cfE_circuit: CycleFoldCircuit<C1, GC1>; let cfE_circuit: CycleFoldCircuit<C1, GC1>;
let z_i1 = self.F.step_native(self.z_i.clone())?;
if self.i > C1::ScalarField::from_le_bytes_mod_order(&std::usize::MAX.to_le_bytes()) {
return Err(Error::MaxStep);
}
let mut i_bytes: [u8; 8] = [0; 8];
i_bytes.copy_from_slice(&self.i.into_bigint().to_bytes_le()[..8]);
let i_usize: usize = usize::from_le_bytes(i_bytes);
let z_i1 = self.F.step_native(i_usize, self.z_i.clone())?;
// compute T and cmT for AugmentedFCircuit // compute T and cmT for AugmentedFCircuit
let (T, cmT) = self.compute_cmT()?; let (T, cmT) = self.compute_cmT()?;
@ -327,13 +334,14 @@ where
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
i: Some(C1::ScalarField::zero()), // = i=0 i: Some(C1::ScalarField::zero()), // = i=0
z_0: Some(self.z_0.clone()), // = z_i
i_usize: Some(0),
z_0: Some(self.z_0.clone()), // = z_i
z_i: Some(self.z_i.clone()), z_i: Some(self.z_i.clone()),
u_i: Some(self.u_i.clone()), // = dummy u_i: Some(self.u_i.clone()), // = dummy
U_i: Some(self.U_i.clone()), // = dummy U_i: Some(self.U_i.clone()), // = dummy
U_i1: Some(U_i1.clone()), U_i1: Some(U_i1.clone()),
cmT: Some(cmT), cmT: Some(cmT),
F: self.F,
F: self.F.clone(),
x: Some(u_i1_x), x: Some(u_i1_x),
cf1_u_i: None, cf1_u_i: None,
cf2_u_i: None, cf2_u_i: None,
@ -399,13 +407,14 @@ where
_gc2: PhantomData, _gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(), poseidon_config: self.poseidon_config.clone(),
i: Some(self.i), i: Some(self.i),
i_usize: Some(i_usize),
z_0: Some(self.z_0.clone()), z_0: Some(self.z_0.clone()),
z_i: Some(self.z_i.clone()), z_i: Some(self.z_i.clone()),
u_i: Some(self.u_i.clone()), u_i: Some(self.u_i.clone()),
U_i: Some(self.U_i.clone()), U_i: Some(self.U_i.clone()),
U_i1: Some(U_i1.clone()), U_i1: Some(U_i1.clone()),
cmT: Some(cmT), cmT: Some(cmT),
F: self.F,
F: self.F.clone(),
x: Some(u_i1_x), x: Some(u_i1_x),
// cyclefold values // cyclefold values
cf1_u_i: Some(cfW_u_i.clone()), cf1_u_i: Some(cfW_u_i.clone()),

+ 18
- 12
folding-schemes/src/frontend/mod.rs

@ -10,7 +10,7 @@ use ark_std::fmt::Debug;
/// inside the agmented F' function). /// inside the agmented F' function).
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state after applying /// The parameter z_i denotes the current state, and z_{i+1} denotes the next state after applying
/// the step. /// the step.
pub trait FCircuit<F: PrimeField>: Clone + Copy + Debug {
pub trait FCircuit<F: PrimeField>: Clone + Debug {
type Params: Debug; type Params: Debug;
/// returns a new FCircuit instance /// returns a new FCircuit instance
@ -18,14 +18,15 @@ pub trait FCircuit: Clone + Copy + Debug {
/// returns the number of elements in the state of the FCircuit, which corresponds to the /// returns the number of elements in the state of the FCircuit, which corresponds to the
/// FCircuit inputs. /// FCircuit inputs.
fn state_len(self) -> usize;
fn state_len(&self) -> usize;
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new /// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1} /// z_{i+1}
fn step_native( fn step_native(
// this method uses self, so that each FCircuit implementation (and different frontends) // this method uses self, so that each FCircuit implementation (and different frontends)
// can hold a state if needed to store data to compute the next state. // can hold a state if needed to store data to compute the next state.
self,
&self,
i: usize,
z_i: Vec<F>, z_i: Vec<F>,
) -> Result<Vec<F>, Error>; ) -> Result<Vec<F>, Error>;
@ -33,8 +34,9 @@ pub trait FCircuit: Clone + Copy + Debug {
fn generate_step_constraints( fn generate_step_constraints(
// this method uses self, so that each FCircuit implementation (and different frontends) // this method uses self, so that each FCircuit implementation (and different frontends)
// can hold a state if needed to store data to generate the constraints. // can hold a state if needed to store data to generate the constraints.
self,
&self,
cs: ConstraintSystemRef<F>, cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>, z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError>; ) -> Result<Vec<FpVar<F>>, SynthesisError>;
} }
@ -63,15 +65,16 @@ pub mod tests {
fn new(_params: Self::Params) -> Self { fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData } Self { _f: PhantomData }
} }
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
1 1
} }
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)]) Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
} }
fn generate_step_constraints( fn generate_step_constraints(
self,
&self,
cs: ConstraintSystemRef<F>, cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>, z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> { ) -> Result<Vec<FpVar<F>>, SynthesisError> {
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?; let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
@ -97,10 +100,10 @@ pub mod tests {
n_constraints: params, n_constraints: params,
} }
} }
fn state_len(self) -> usize {
fn state_len(&self) -> usize {
1 1
} }
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let mut z_i1 = F::one(); let mut z_i1 = F::one();
for _ in 0..self.n_constraints - 1 { for _ in 0..self.n_constraints - 1 {
z_i1 *= z_i[0]; z_i1 *= z_i[0];
@ -108,8 +111,9 @@ pub mod tests {
Ok(vec![z_i1]) Ok(vec![z_i1])
} }
fn generate_step_constraints( fn generate_step_constraints(
self,
&self,
cs: ConstraintSystemRef<F>, cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>, z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> { ) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut z_i1 = FpVar::<F>::new_witness(cs.clone(), || Ok(F::one()))?; let mut z_i1 = FpVar::<F>::new_witness(cs.clone(), || Ok(F::one()))?;
@ -143,7 +147,9 @@ pub mod tests {
let z_i1 = Vec::<FpVar<F>>::new_input(cs.clone(), || { let z_i1 = Vec::<FpVar<F>>::new_input(cs.clone(), || {
Ok(self.z_i1.unwrap_or(vec![F::zero()])) Ok(self.z_i1.unwrap_or(vec![F::zero()]))
})?; })?;
let computed_z_i1 = self.FC.generate_step_constraints(cs.clone(), z_i.clone())?;
let computed_z_i1 = self
.FC
.generate_step_constraints(cs.clone(), 0, z_i.clone())?;
computed_z_i1.enforce_equal(&z_i1)?; computed_z_i1.enforce_equal(&z_i1)?;
Ok(()) Ok(())
@ -173,7 +179,7 @@ pub mod tests {
let wrapper_circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> { let wrapper_circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> {
FC: custom_circuit, FC: custom_circuit,
z_i: Some(z_i.clone()), z_i: Some(z_i.clone()),
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
}; };
wrapper_circuit.generate_constraints(cs.clone()).unwrap(); wrapper_circuit.generate_constraints(cs.clone()).unwrap();
assert_eq!(cs.num_constraints(), n_constraints); assert_eq!(cs.num_constraints(), n_constraints);

+ 2
- 0
folding-schemes/src/lib.rs

@ -66,6 +66,8 @@ pub enum Error {
NewDomainFail, NewDomainFail,
#[error("Feature '{0}' not supported yet")] #[error("Feature '{0}' not supported yet")]
NotSupportedYet(String), NotSupportedYet(String),
#[error("max i-th step reached (usize limit reached)")]
MaxStep,
#[error(transparent)] #[error(transparent)]
ProtoGalaxy(folding::protogalaxy::ProtoGalaxyError), ProtoGalaxy(folding::protogalaxy::ProtoGalaxyError),

Loading…
Cancel
Save