mirror of
https://github.com/arnaucube/sonobe.git
synced 2026-01-08 06:51:32 +01:00
Add external inputs logic to F function/circuit. Add an example of usage with external inputs too. (#78)
* Add external inputs logic to F function/circuit. Add an example of usage with external inputs too. * Add examples run into CI
This commit is contained in:
13
.github/workflows/ci.yml
vendored
13
.github/workflows/ci.yml
vendored
@@ -72,6 +72,18 @@ jobs:
|
||||
run: |
|
||||
cargo test --doc
|
||||
|
||||
examples:
|
||||
if: github.event.pull_request.draft == false
|
||||
name: Run examples & examples tests
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions-rs/toolchain@v1
|
||||
- name: Run examples tests
|
||||
run: cargo test --examples
|
||||
- name: Run examples
|
||||
run: cargo run --release --example 2>&1 | grep -E '^ ' | xargs -n1 cargo run --release --example
|
||||
|
||||
fmt:
|
||||
if: github.event.pull_request.draft == false
|
||||
name: Rustfmt
|
||||
@@ -104,6 +116,7 @@ jobs:
|
||||
args: --all-targets --all-features -- -D warnings
|
||||
|
||||
typos:
|
||||
if: github.event.pull_request.draft == false
|
||||
name: Spell Check with Typos
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
||||
213
folding-schemes/examples/external_inputs.rs
Normal file
213
folding-schemes/examples/external_inputs.rs
Normal file
@@ -0,0 +1,213 @@
|
||||
#![allow(non_snake_case)]
|
||||
#![allow(non_upper_case_globals)]
|
||||
#![allow(non_camel_case_types)]
|
||||
#![allow(clippy::upper_case_acronyms)]
|
||||
|
||||
use ark_crypto_primitives::{
|
||||
crh::{
|
||||
poseidon::constraints::{CRHGadget, CRHParametersVar},
|
||||
poseidon::CRH,
|
||||
CRHScheme, CRHSchemeGadget,
|
||||
},
|
||||
sponge::{poseidon::PoseidonConfig, Absorb},
|
||||
};
|
||||
use ark_ff::PrimeField;
|
||||
use ark_pallas::{constraints::GVar, Fr, Projective};
|
||||
use ark_r1cs_std::fields::fp::FpVar;
|
||||
use ark_r1cs_std::{alloc::AllocVar, fields::FieldVar};
|
||||
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
||||
use ark_std::Zero;
|
||||
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
||||
use core::marker::PhantomData;
|
||||
use std::time::Instant;
|
||||
|
||||
use folding_schemes::commitment::pedersen::Pedersen;
|
||||
use folding_schemes::folding::nova::Nova;
|
||||
use folding_schemes::frontend::FCircuit;
|
||||
use folding_schemes::{Error, FoldingScheme};
|
||||
mod utils;
|
||||
use folding_schemes::transcript::poseidon::poseidon_test_config;
|
||||
use utils::test_nova_setup;
|
||||
|
||||
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
||||
/// denotes the current state which contains 2 elements, and z_{i+1} denotes the next state which
|
||||
/// we get by applying the step.
|
||||
///
|
||||
/// In this example we set the state to be the previous state together with an external input, and
|
||||
/// the new state is an array which contains the new state and a zero which will be ignored.
|
||||
///
|
||||
/// This is useful for example if we want to fold multiple verifications of signatures, where the
|
||||
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
|
||||
/// keep things simpler, the following example does not verify signatures but does a similar
|
||||
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
|
||||
/// together with an external input (w_i).
|
||||
///
|
||||
/// w_1 w_2 w_3 w_4
|
||||
/// │ │ │ │
|
||||
/// ▼ ▼ ▼ ▼
|
||||
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
|
||||
/// ─────►│F├────►│F├────►│F├────►│F├────►
|
||||
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
|
||||
///
|
||||
///
|
||||
/// where each F is:
|
||||
/// w_i
|
||||
/// │ ┌────────────────────┐
|
||||
/// │ │FCircuit │
|
||||
/// │ │ │
|
||||
/// └────►│ h =Hash(z_i[0],w_i)│
|
||||
/// │ │ =Hash(v, w_i) │
|
||||
/// ────────►│ │ ├───────►
|
||||
/// z_i=[v,0] │ └──►z_{i+1}=[h, 0] │ z_{i+1}=[h,0]
|
||||
/// │ │
|
||||
/// └────────────────────┘
|
||||
///
|
||||
/// where each w_i value is set at the external_inputs array.
|
||||
///
|
||||
/// The last state z_i is used together with the external input w_i as inputs to compute the new
|
||||
/// state z_{i+1}.
|
||||
/// The function F will output the new state in an array of two elements, where the second element
|
||||
/// is a 0. In other words, z_{i+1} = [F([z_i, w_i]), 0], and the 0 will be replaced by w_{i+1} in
|
||||
/// the next iteration, so z_{i+2} = [F([z_{i+1}, w_{i+1}]), 0].
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ExternalInputsCircuits<F: PrimeField>
|
||||
where
|
||||
F: Absorb,
|
||||
{
|
||||
_f: PhantomData<F>,
|
||||
poseidon_config: PoseidonConfig<F>,
|
||||
external_inputs: Vec<F>,
|
||||
}
|
||||
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
|
||||
where
|
||||
F: Absorb,
|
||||
{
|
||||
type Params = (PoseidonConfig<F>, Vec<F>); // where Vec<F> contains the external inputs
|
||||
|
||||
fn new(params: Self::Params) -> Self {
|
||||
Self {
|
||||
_f: PhantomData,
|
||||
poseidon_config: params.0,
|
||||
external_inputs: params.1,
|
||||
}
|
||||
}
|
||||
fn state_len(&self) -> usize {
|
||||
2
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(&self, i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let input: [F; 2] = [z_i[0], self.external_inputs[i]];
|
||||
let h = CRH::<F>::evaluate(&self.poseidon_config, input).unwrap();
|
||||
Ok(vec![h, F::zero()])
|
||||
}
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let crh_params =
|
||||
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
|
||||
let external_inputVar =
|
||||
FpVar::<F>::new_witness(cs.clone(), || Ok(self.external_inputs[i])).unwrap();
|
||||
let input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputVar.clone()];
|
||||
let h = CRHGadget::<F>::evaluate(&crh_params, &input)?;
|
||||
Ok(vec![h, FpVar::<F>::zero()])
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo test --example external_inputs
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_r1cs_std::R1CSVar;
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
||||
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
|
||||
#[test]
|
||||
fn test_f_circuit() {
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, vec![Fr::from(3_u32)]));
|
||||
let z_i = vec![Fr::from(1_u32), Fr::zero()];
|
||||
|
||||
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
|
||||
|
||||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let computed_z_i1Var = circuit
|
||||
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
|
||||
.unwrap();
|
||||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
}
|
||||
}
|
||||
|
||||
/// cargo run --release --example external_inputs
|
||||
fn main() {
|
||||
let num_steps = 5;
|
||||
let initial_state = vec![Fr::from(1_u32), Fr::zero()];
|
||||
|
||||
// set the external inputs to be used at each folding step
|
||||
let external_inputs = vec![
|
||||
Fr::from(3_u32),
|
||||
Fr::from(33_u32),
|
||||
Fr::from(73_u32),
|
||||
Fr::from(103_u32),
|
||||
Fr::from(125_u32),
|
||||
];
|
||||
assert_eq!(external_inputs.len(), num_steps);
|
||||
|
||||
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
let F_circuit = ExternalInputsCircuits::<Fr>::new((poseidon_config, external_inputs));
|
||||
|
||||
println!("Prepare Nova ProverParams & VerifierParams");
|
||||
let (prover_params, verifier_params) =
|
||||
test_nova_setup::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
|
||||
|
||||
/// The idea here is that eventually we could replace the next line chunk that defines the
|
||||
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
||||
/// trait, and the rest of our code would be working without needing to be updated.
|
||||
type NOVA = Nova<
|
||||
Projective,
|
||||
GVar,
|
||||
Projective2,
|
||||
GVar2,
|
||||
ExternalInputsCircuits<Fr>,
|
||||
Pedersen<Projective>,
|
||||
Pedersen<Projective2>,
|
||||
>;
|
||||
|
||||
println!("Initialize FoldingScheme");
|
||||
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
||||
|
||||
// compute a step of the IVC
|
||||
for i in 0..num_steps {
|
||||
let start = Instant::now();
|
||||
folding_scheme.prove_step().unwrap();
|
||||
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
||||
}
|
||||
println!(
|
||||
"state at last step (after {} iterations): {:?}",
|
||||
num_steps,
|
||||
folding_scheme.state()
|
||||
);
|
||||
|
||||
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
|
||||
|
||||
println!("Run the Nova's IVC verifier");
|
||||
NOVA::verify(
|
||||
verifier_params,
|
||||
initial_state.clone(),
|
||||
folding_scheme.state(), // latest state
|
||||
Fr::from(num_steps as u32),
|
||||
running_instance,
|
||||
incoming_instance,
|
||||
cyclefold_instance,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
@@ -35,13 +35,13 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
fn state_len(&self) -> usize {
|
||||
5
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let a = z_i[0] + F::from(4_u32);
|
||||
let b = z_i[1] + F::from(40_u32);
|
||||
let c = z_i[2] * F::from(4_u32);
|
||||
@@ -53,8 +53,9 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
||||
@@ -74,12 +75,12 @@ impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
||||
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
|
||||
#[test]
|
||||
fn test_add_f_circuit() {
|
||||
fn test_f_circuit() {
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let circuit = MultiInputsFCircuit::<Fr>::new(());
|
||||
@@ -91,11 +92,11 @@ pub mod tests {
|
||||
Fr::from(1_u32),
|
||||
];
|
||||
|
||||
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
||||
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
|
||||
|
||||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let computed_z_i1Var = circuit
|
||||
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
||||
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
|
||||
.unwrap();
|
||||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
}
|
||||
|
||||
@@ -41,13 +41,13 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
||||
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
||||
|
||||
@@ -56,8 +56,9 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
|
||||
/// generates the constraints for the step of F for the given z_i
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
&self,
|
||||
_cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let unit_var = UnitVar::default();
|
||||
@@ -71,22 +72,22 @@ impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
||||
#[cfg(test)]
|
||||
pub mod tests {
|
||||
use super::*;
|
||||
use ark_r1cs_std::alloc::AllocVar;
|
||||
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
|
||||
use ark_relations::r1cs::ConstraintSystem;
|
||||
|
||||
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
|
||||
#[test]
|
||||
fn test_sha256_f_circuit() {
|
||||
fn test_f_circuit() {
|
||||
let cs = ConstraintSystem::<Fr>::new_ref();
|
||||
|
||||
let circuit = Sha256FCircuit::<Fr>::new(());
|
||||
let z_i = vec![Fr::from(1_u32)];
|
||||
|
||||
let z_i1 = circuit.step_native(z_i.clone()).unwrap();
|
||||
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
|
||||
|
||||
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
||||
let computed_z_i1Var = circuit
|
||||
.generate_step_constraints(cs.clone(), z_iVar.clone())
|
||||
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
|
||||
.unwrap();
|
||||
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
||||
}
|
||||
|
||||
@@ -96,7 +96,7 @@ impl<C: CurveGroup> LCCCS<C> {
|
||||
w: &Witness<C::ScalarField>,
|
||||
) -> Result<(), Error> {
|
||||
// check that C is the commitment of w. Notice that this is not verifying a Pedersen
|
||||
// opening, but checking that the Commmitment comes from committing to the witness.
|
||||
// opening, but checking that the Commitment comes from committing to the witness.
|
||||
if self.C != Pedersen::<C>::commit(pedersen_params, &w.w, &w.r_w)? {
|
||||
return Err(Error::NotSatisfied);
|
||||
}
|
||||
|
||||
@@ -245,6 +245,7 @@ pub struct AugmentedFCircuit<
|
||||
pub _gc2: PhantomData<GC2>,
|
||||
pub poseidon_config: PoseidonConfig<CF1<C1>>,
|
||||
pub i: Option<CF1<C1>>,
|
||||
pub i_usize: Option<usize>,
|
||||
pub z_0: Option<Vec<C1::ScalarField>>,
|
||||
pub z_i: Option<Vec<C1::ScalarField>>,
|
||||
pub u_i: Option<CommittedInstance<C1>>,
|
||||
@@ -278,6 +279,7 @@ where
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: poseidon_config.clone(),
|
||||
i: None,
|
||||
i_usize: None,
|
||||
z_0: None,
|
||||
z_i: None,
|
||||
u_i: None,
|
||||
@@ -349,7 +351,10 @@ where
|
||||
)?;
|
||||
|
||||
// get z_{i+1} from the F circuit
|
||||
let z_i1 = self.F.generate_step_constraints(cs.clone(), z_i.clone())?;
|
||||
let i_usize = self.i_usize.unwrap_or(0);
|
||||
let z_i1 = self
|
||||
.F
|
||||
.generate_step_constraints(cs.clone(), i_usize, z_i.clone())?;
|
||||
|
||||
let zero = FpVar::<CF1<C1>>::new_constant(cs.clone(), CF1::<C1>::zero())?;
|
||||
let is_not_basecase = i.is_neq(&zero)?;
|
||||
|
||||
@@ -508,7 +508,7 @@ pub mod tests {
|
||||
let circuit = WrapperCircuit::<Fr, CubicFCircuit<Fr>> {
|
||||
FC: cubic_circuit,
|
||||
z_i: Some(z_i.clone()),
|
||||
z_i1: Some(cubic_circuit.step_native(z_i).unwrap()),
|
||||
z_i1: Some(cubic_circuit.step_native(0, z_i).unwrap()),
|
||||
};
|
||||
|
||||
test_relaxed_r1cs_gadget(circuit);
|
||||
@@ -551,7 +551,7 @@ pub mod tests {
|
||||
let circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> {
|
||||
FC: custom_circuit,
|
||||
z_i: Some(z_i.clone()),
|
||||
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
|
||||
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
|
||||
};
|
||||
test_relaxed_r1cs_gadget(circuit);
|
||||
}
|
||||
@@ -567,7 +567,7 @@ pub mod tests {
|
||||
let circuit = WrapperCircuit::<Fq, CustomFCircuit<Fq>> {
|
||||
FC: custom_circuit,
|
||||
z_i: Some(z_i.clone()),
|
||||
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
|
||||
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
|
||||
};
|
||||
circuit.generate_constraints(cs.clone()).unwrap();
|
||||
cs.finalize();
|
||||
|
||||
@@ -227,7 +227,7 @@ where
|
||||
let (prover_params, F_circuit) = prep_param;
|
||||
|
||||
let (r1cs, cf_r1cs) =
|
||||
get_r1cs::<C1, GC1, C2, GC2, FC>(&prover_params.poseidon_config, *F_circuit)?;
|
||||
get_r1cs::<C1, GC1, C2, GC2, FC>(&prover_params.poseidon_config, F_circuit.clone())?;
|
||||
|
||||
let verifier_params = VerifierParams::<C1, C2> {
|
||||
poseidon_config: prover_params.poseidon_config.clone(),
|
||||
@@ -244,7 +244,7 @@ where
|
||||
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
|
||||
|
||||
let augmented_F_circuit =
|
||||
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, F);
|
||||
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, F.clone());
|
||||
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
|
||||
|
||||
augmented_F_circuit.generate_constraints(cs.clone())?;
|
||||
@@ -292,7 +292,14 @@ where
|
||||
let cfW_circuit: CycleFoldCircuit<C1, GC1>;
|
||||
let cfE_circuit: CycleFoldCircuit<C1, GC1>;
|
||||
|
||||
let z_i1 = self.F.step_native(self.z_i.clone())?;
|
||||
if self.i > C1::ScalarField::from_le_bytes_mod_order(&std::usize::MAX.to_le_bytes()) {
|
||||
return Err(Error::MaxStep);
|
||||
}
|
||||
let mut i_bytes: [u8; 8] = [0; 8];
|
||||
i_bytes.copy_from_slice(&self.i.into_bigint().to_bytes_le()[..8]);
|
||||
let i_usize: usize = usize::from_le_bytes(i_bytes);
|
||||
|
||||
let z_i1 = self.F.step_native(i_usize, self.z_i.clone())?;
|
||||
|
||||
// compute T and cmT for AugmentedFCircuit
|
||||
let (T, cmT) = self.compute_cmT()?;
|
||||
@@ -327,13 +334,14 @@ where
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: self.poseidon_config.clone(),
|
||||
i: Some(C1::ScalarField::zero()), // = i=0
|
||||
z_0: Some(self.z_0.clone()), // = z_i
|
||||
i_usize: Some(0),
|
||||
z_0: Some(self.z_0.clone()), // = z_i
|
||||
z_i: Some(self.z_i.clone()),
|
||||
u_i: Some(self.u_i.clone()), // = dummy
|
||||
U_i: Some(self.U_i.clone()), // = dummy
|
||||
U_i1: Some(U_i1.clone()),
|
||||
cmT: Some(cmT),
|
||||
F: self.F,
|
||||
F: self.F.clone(),
|
||||
x: Some(u_i1_x),
|
||||
cf1_u_i: None,
|
||||
cf2_u_i: None,
|
||||
@@ -399,13 +407,14 @@ where
|
||||
_gc2: PhantomData,
|
||||
poseidon_config: self.poseidon_config.clone(),
|
||||
i: Some(self.i),
|
||||
i_usize: Some(i_usize),
|
||||
z_0: Some(self.z_0.clone()),
|
||||
z_i: Some(self.z_i.clone()),
|
||||
u_i: Some(self.u_i.clone()),
|
||||
U_i: Some(self.U_i.clone()),
|
||||
U_i1: Some(U_i1.clone()),
|
||||
cmT: Some(cmT),
|
||||
F: self.F,
|
||||
F: self.F.clone(),
|
||||
x: Some(u_i1_x),
|
||||
// cyclefold values
|
||||
cf1_u_i: Some(cfW_u_i.clone()),
|
||||
|
||||
@@ -10,7 +10,7 @@ use ark_std::fmt::Debug;
|
||||
/// inside the agmented F' function).
|
||||
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state after applying
|
||||
/// the step.
|
||||
pub trait FCircuit<F: PrimeField>: Clone + Copy + Debug {
|
||||
pub trait FCircuit<F: PrimeField>: Clone + Debug {
|
||||
type Params: Debug;
|
||||
|
||||
/// returns a new FCircuit instance
|
||||
@@ -18,14 +18,15 @@ pub trait FCircuit<F: PrimeField>: Clone + Copy + Debug {
|
||||
|
||||
/// returns the number of elements in the state of the FCircuit, which corresponds to the
|
||||
/// FCircuit inputs.
|
||||
fn state_len(self) -> usize;
|
||||
fn state_len(&self) -> usize;
|
||||
|
||||
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
||||
/// z_{i+1}
|
||||
fn step_native(
|
||||
// this method uses self, so that each FCircuit implementation (and different frontends)
|
||||
// can hold a state if needed to store data to compute the next state.
|
||||
self,
|
||||
&self,
|
||||
i: usize,
|
||||
z_i: Vec<F>,
|
||||
) -> Result<Vec<F>, Error>;
|
||||
|
||||
@@ -33,8 +34,9 @@ pub trait FCircuit<F: PrimeField>: Clone + Copy + Debug {
|
||||
fn generate_step_constraints(
|
||||
// this method uses self, so that each FCircuit implementation (and different frontends)
|
||||
// can hold a state if needed to store data to generate the constraints.
|
||||
self,
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError>;
|
||||
}
|
||||
@@ -63,15 +65,16 @@ pub mod tests {
|
||||
fn new(_params: Self::Params) -> Self {
|
||||
Self { _f: PhantomData }
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
|
||||
}
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
|
||||
@@ -97,10 +100,10 @@ pub mod tests {
|
||||
n_constraints: params,
|
||||
}
|
||||
}
|
||||
fn state_len(self) -> usize {
|
||||
fn state_len(&self) -> usize {
|
||||
1
|
||||
}
|
||||
fn step_native(self, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
||||
let mut z_i1 = F::one();
|
||||
for _ in 0..self.n_constraints - 1 {
|
||||
z_i1 *= z_i[0];
|
||||
@@ -108,8 +111,9 @@ pub mod tests {
|
||||
Ok(vec![z_i1])
|
||||
}
|
||||
fn generate_step_constraints(
|
||||
self,
|
||||
&self,
|
||||
cs: ConstraintSystemRef<F>,
|
||||
_i: usize,
|
||||
z_i: Vec<FpVar<F>>,
|
||||
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
||||
let mut z_i1 = FpVar::<F>::new_witness(cs.clone(), || Ok(F::one()))?;
|
||||
@@ -143,7 +147,9 @@ pub mod tests {
|
||||
let z_i1 = Vec::<FpVar<F>>::new_input(cs.clone(), || {
|
||||
Ok(self.z_i1.unwrap_or(vec![F::zero()]))
|
||||
})?;
|
||||
let computed_z_i1 = self.FC.generate_step_constraints(cs.clone(), z_i.clone())?;
|
||||
let computed_z_i1 = self
|
||||
.FC
|
||||
.generate_step_constraints(cs.clone(), 0, z_i.clone())?;
|
||||
|
||||
computed_z_i1.enforce_equal(&z_i1)?;
|
||||
Ok(())
|
||||
@@ -173,7 +179,7 @@ pub mod tests {
|
||||
let wrapper_circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> {
|
||||
FC: custom_circuit,
|
||||
z_i: Some(z_i.clone()),
|
||||
z_i1: Some(custom_circuit.step_native(z_i).unwrap()),
|
||||
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
|
||||
};
|
||||
wrapper_circuit.generate_constraints(cs.clone()).unwrap();
|
||||
assert_eq!(cs.num_constraints(), n_constraints);
|
||||
|
||||
@@ -66,6 +66,8 @@ pub enum Error {
|
||||
NewDomainFail,
|
||||
#[error("Feature '{0}' not supported yet")]
|
||||
NotSupportedYet(String),
|
||||
#[error("max i-th step reached (usize limit reached)")]
|
||||
MaxStep,
|
||||
|
||||
#[error(transparent)]
|
||||
ProtoGalaxy(folding::protogalaxy::ProtoGalaxyError),
|
||||
|
||||
Reference in New Issue
Block a user