Browse Source

Port Espresso's VirtualPoly, MLE and SumCheck (#8)

Port Espresso/hyperplonk's `virtualpolynomial`, `multilinearpolynomial`
and `sum_check` utils from
https://github.com/EspressoSystems/hyperplonk/tree/main
Each file contains the reference to the original file.

Porting it into a subdirectory `src/utils/espresso`, to have it
self-contained. In future iterations we might replace part of it but we
can keep focusing on the folding schemes part for now.
update-nifs-interface
arnaucube 1 year ago
committed by GitHub
parent
commit
b4a0b50618
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 1629 additions and 4 deletions
  1. +17
    -4
      Cargo.toml
  2. +3
    -0
      src/utils/espresso/mod.rs
  3. +200
    -0
      src/utils/espresso/multilinear_polynomial.rs
  4. +211
    -0
      src/utils/espresso/sum_check/mod.rs
  5. +220
    -0
      src/utils/espresso/sum_check/prover.rs
  6. +59
    -0
      src/utils/espresso/sum_check/structs.rs
  7. +362
    -0
      src/utils/espresso/sum_check/verifier.rs
  8. +550
    -0
      src/utils/espresso/virtual_polynomial.rs
  9. +6
    -0
      src/utils/mod.rs
  10. +1
    -0
      src/utils/vec.rs

+ 17
- 4
Cargo.toml

@ -5,17 +5,30 @@ edition = "2021"
[dependencies]
ark-ec = "0.4.2"
ark-ff = "0.4.2"
ark-std = "0.4.0"
ark-poly = "0.4.0"
ark-ff = "^0.4.0"
ark-poly = "^0.4.0"
ark-std = "^0.4.0"
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = ["r1cs", "sponge"] }
ark-relations = { version = "^0.4.0", default-features = false }
ark-r1cs-std = { version = "^0.4.0", default-features = false }
thiserror = "1.0"
rayon = "1.7.0"
# tmp imports for espresso's sumcheck
ark-serialize = "0.4.2"
espresso_subroutines = {git="https://github.com/EspressoSystems/hyperplonk", package="subroutines"}
espresso_transcript = {git="https://github.com/EspressoSystems/hyperplonk", package="transcript"}
[dev-dependencies]
ark-bls12-377 = "0.4.0"
ark-bw6-761 = "0.4.0"
[features]
default = []
default = ["parallel"]
parallel = [
"ark-std/parallel",
"ark-ff/parallel",
"ark-poly/parallel",
]

+ 3
- 0
src/utils/espresso/mod.rs

@ -0,0 +1,3 @@
pub mod multilinear_polynomial;
pub mod sum_check;
pub mod virtual_polynomial;

+ 200
- 0
src/utils/espresso/multilinear_polynomial.rs

@ -0,0 +1,200 @@
// code forked from
// https://github.com/EspressoSystems/hyperplonk/blob/main/arithmetic/src/multilinear_polynomial.rs
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
use ark_ff::Field;
#[cfg(feature = "parallel")]
use rayon::prelude::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
pub use ark_poly::DenseMultilinearExtension;
pub fn fix_variables<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for (i, point) in partial_point.iter().enumerate().take(dim) {
poly = fix_one_variable_helper(&poly, nv - i, point);
}
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
fn fix_one_variable_helper<F: Field>(data: &[F], nv: usize, point: &F) -> Vec<F> {
let mut res = vec![F::zero(); 1 << (nv - 1)];
// evaluate single variable of partial point from left to right
#[cfg(not(feature = "parallel"))]
for i in 0..(1 << (nv - 1)) {
res[i] = data[i << 1] + (data[(i << 1) + 1] - data[i << 1]) * point;
}
#[cfg(feature = "parallel")]
res.par_iter_mut().enumerate().for_each(|(i, x)| {
*x = data[i << 1] + (data[(i << 1) + 1] - data[i << 1]) * point;
});
res
}
pub fn evaluate_no_par<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len());
fix_variables_no_par(poly, point).evaluations[0]
}
fn fix_variables_no_par<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for i in 1..dim + 1 {
let r = partial_point[i - 1];
for b in 0..(1 << (nv - i)) {
poly[b] = poly[b << 1] + (poly[(b << 1) + 1] - poly[b << 1]) * r;
}
}
DenseMultilinearExtension::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
/// Given multilinear polynomial `p(x)` and s `s`, compute `s*p(x)`
pub fn scalar_mul<F: Field>(
poly: &DenseMultilinearExtension<F>,
s: &F,
) -> DenseMultilinearExtension<F> {
DenseMultilinearExtension {
evaluations: poly.evaluations.iter().map(|e| *e * s).collect(),
num_vars: poly.num_vars,
}
}
/// Test-only methods used in virtual_polynomial.rs
#[cfg(test)]
pub mod tests {
use super::*;
use ark_ff::PrimeField;
use ark_std::rand::RngCore;
use ark_std::{end_timer, start_timer};
use std::sync::Arc;
pub fn fix_last_variables<F: PrimeField>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for (i, point) in partial_point.iter().rev().enumerate().take(dim) {
poly = fix_last_variable_helper(&poly, nv - i, point);
}
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
fn fix_last_variable_helper<F: Field>(data: &[F], nv: usize, point: &F) -> Vec<F> {
let half_len = 1 << (nv - 1);
let mut res = vec![F::zero(); half_len];
// evaluate single variable of partial point from left to right
#[cfg(not(feature = "parallel"))]
for b in 0..half_len {
res[b] = data[b] + (data[b + half_len] - data[b]) * point;
}
#[cfg(feature = "parallel")]
res.par_iter_mut().enumerate().for_each(|(i, x)| {
*x = data[i] + (data[i + half_len] - data[i]) * point;
});
res
}
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
#[cfg(test)]
pub fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Arc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Arc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// Build a randomize list of mle-s whose sum is zero.
#[cfg(test)]
pub fn random_zero_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> Vec<Arc<DenseMultilinearExtension<F>>> {
let start = start_timer!(|| "sample random zero mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
for _ in 0..(1 << nv) {
multiplicands[0].push(F::zero());
for e in multiplicands.iter_mut().skip(1) {
e.push(F::rand(rng));
}
}
let list = multiplicands
.into_iter()
.map(|x| Arc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
list
}
}

+ 211
- 0
src/utils/espresso/sum_check/mod.rs

@ -0,0 +1,211 @@
// code forked from:
// https://github.com/EspressoSystems/hyperplonk/tree/main/subroutines/src/poly_iop/sum_check
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! This module implements the sum check protocol.
use crate::utils::virtual_polynomial::{VPAuxInfo, VirtualPolynomial};
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use std::{fmt::Debug, sync::Arc};
use espresso_subroutines::poly_iop::{prelude::PolyIOPErrors, PolyIOP};
use espresso_transcript::IOPTranscript;
use structs::{IOPProof, IOPProverState, IOPVerifierState};
mod prover;
pub mod structs;
pub mod verifier;
/// Trait for doing sum check protocols.
pub trait SumCheck<F: PrimeField> {
type VirtualPolynomial;
type VPAuxInfo;
type MultilinearExtension;
type SumCheckProof: Clone + Debug + Default + PartialEq;
type Transcript;
type SumCheckSubClaim: Clone + Debug + Default + PartialEq;
/// Extract sum from the proof
fn extract_sum(proof: &Self::SumCheckProof) -> F;
/// Initialize the system with a transcript
///
/// This function is optional -- in the case where a SumCheck is
/// an building block for a more complex protocol, the transcript
/// may be initialized by this complex protocol, and passed to the
/// SumCheck prover/verifier.
fn init_transcript() -> Self::Transcript;
/// Generate proof of the sum of polynomial over {0,1}^`num_vars`
///
/// The polynomial is represented in the form of a VirtualPolynomial.
fn prove(
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::SumCheckProof, PolyIOPErrors>;
/// Verify the claimed sum using the proof
fn verify(
sum: F,
proof: &Self::SumCheckProof,
aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SumCheckSubClaim, PolyIOPErrors>;
}
/// Trait for sum check protocol prover side APIs.
pub trait SumCheckProver<F: PrimeField>
where
Self: Sized,
{
type VirtualPolynomial;
type ProverMessage;
/// Initialize the prover state to argue for the sum of the input polynomial
/// over {0,1}^`num_vars`.
fn prover_init(polynomial: &Self::VirtualPolynomial) -> Result<Self, PolyIOPErrors>;
/// Receive message from verifier, generate prover message, and proceed to
/// next round.
///
/// Main algorithm used is from section 3.2 of [XZZPS19](https://eprint.iacr.org/2019/317.pdf#subsection.3.2).
fn prove_round_and_update_state(
&mut self,
challenge: &Option<F>,
) -> Result<Self::ProverMessage, PolyIOPErrors>;
}
/// Trait for sum check protocol verifier side APIs.
pub trait SumCheckVerifier<F: PrimeField> {
type VPAuxInfo;
type ProverMessage;
type Challenge;
type Transcript;
type SumCheckSubClaim;
/// Initialize the verifier's state.
fn verifier_init(index_info: &Self::VPAuxInfo) -> Self;
/// Run verifier for the current round, given a prover message.
///
/// Note that `verify_round_and_update_state` only samples and stores
/// challenges; and update the verifier's state accordingly. The actual
/// verifications are deferred (in batch) to `check_and_generate_subclaim`
/// at the last step.
fn verify_round_and_update_state(
&mut self,
prover_msg: &Self::ProverMessage,
transcript: &mut Self::Transcript,
) -> Result<Self::Challenge, PolyIOPErrors>;
/// This function verifies the deferred checks in the interactive version of
/// the protocol; and generate the subclaim. Returns an error if the
/// proof failed to verify.
///
/// If the asserted sum is correct, then the multilinear polynomial
/// evaluated at `subclaim.point` will be `subclaim.expected_evaluation`.
/// Otherwise, it is highly unlikely that those two will be equal.
/// Larger field size guarantees smaller soundness error.
fn check_and_generate_subclaim(
&self,
asserted_sum: &F,
) -> Result<Self::SumCheckSubClaim, PolyIOPErrors>;
}
/// A SumCheckSubClaim is a claim generated by the verifier at the end of
/// verification when it is convinced.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct SumCheckSubClaim<F: PrimeField> {
/// the multi-dimensional point that this multilinear extension is evaluated
/// to
pub point: Vec<F>,
/// the expected evaluation
pub expected_evaluation: F,
}
impl<F: PrimeField> SumCheck<F> for PolyIOP<F> {
type SumCheckProof = IOPProof<F>;
type VirtualPolynomial = VirtualPolynomial<F>;
type VPAuxInfo = VPAuxInfo<F>;
type MultilinearExtension = Arc<DenseMultilinearExtension<F>>;
type SumCheckSubClaim = SumCheckSubClaim<F>;
type Transcript = IOPTranscript<F>;
fn extract_sum(proof: &Self::SumCheckProof) -> F {
let start = start_timer!(|| "extract sum");
let res = proof.proofs[0].evaluations[0] + proof.proofs[0].evaluations[1];
end_timer!(start);
res
}
fn init_transcript() -> Self::Transcript {
let start = start_timer!(|| "init transcript");
let res = IOPTranscript::<F>::new(b"Initializing SumCheck transcript");
end_timer!(start);
res
}
fn prove(
poly: &Self::VirtualPolynomial,
transcript: &mut Self::Transcript,
) -> Result<Self::SumCheckProof, PolyIOPErrors> {
let start = start_timer!(|| "sum check prove");
transcript.append_serializable_element(b"aux info", &poly.aux_info)?;
let mut prover_state = IOPProverState::prover_init(poly)?;
let mut challenge = None;
let mut prover_msgs = Vec::with_capacity(poly.aux_info.num_variables);
for _ in 0..poly.aux_info.num_variables {
let prover_msg =
IOPProverState::prove_round_and_update_state(&mut prover_state, &challenge)?;
transcript.append_serializable_element(b"prover msg", &prover_msg)?;
prover_msgs.push(prover_msg);
challenge = Some(transcript.get_and_append_challenge(b"Internal round")?);
}
// pushing the last challenge point to the state
if let Some(p) = challenge {
prover_state.challenges.push(p)
};
end_timer!(start);
Ok(IOPProof {
point: prover_state.challenges,
proofs: prover_msgs,
})
}
fn verify(
claimed_sum: F,
proof: &Self::SumCheckProof,
aux_info: &Self::VPAuxInfo,
transcript: &mut Self::Transcript,
) -> Result<Self::SumCheckSubClaim, PolyIOPErrors> {
let start = start_timer!(|| "sum check verify");
transcript.append_serializable_element(b"aux info", aux_info)?;
let mut verifier_state = IOPVerifierState::verifier_init(aux_info);
for i in 0..aux_info.num_variables {
let prover_msg = proof.proofs.get(i).expect("proof is incomplete");
transcript.append_serializable_element(b"prover msg", prover_msg)?;
IOPVerifierState::verify_round_and_update_state(
&mut verifier_state,
prover_msg,
transcript,
)?;
}
let res = IOPVerifierState::check_and_generate_subclaim(&verifier_state, &claimed_sum);
end_timer!(start);
res
}
}

+ 220
- 0
src/utils/espresso/sum_check/prover.rs

@ -0,0 +1,220 @@
// code forked from:
// https://github.com/EspressoSystems/hyperplonk/tree/main/subroutines/src/poly_iop/sum_check
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! Prover subroutines for a SumCheck protocol.
use super::SumCheckProver;
use crate::utils::multilinear_polynomial::fix_variables;
use crate::utils::virtual_polynomial::VirtualPolynomial;
use ark_ff::{batch_inversion, PrimeField};
use ark_poly::DenseMultilinearExtension;
use ark_std::{cfg_into_iter, end_timer, start_timer, vec::Vec};
use rayon::prelude::{IntoParallelIterator, IntoParallelRefIterator};
use std::sync::Arc;
use super::structs::{IOPProverMessage, IOPProverState};
use espresso_subroutines::poly_iop::prelude::PolyIOPErrors;
// #[cfg(feature = "parallel")]
use rayon::iter::{IntoParallelRefMutIterator, ParallelIterator};
impl<F: PrimeField> SumCheckProver<F> for IOPProverState<F> {
type VirtualPolynomial = VirtualPolynomial<F>;
type ProverMessage = IOPProverMessage<F>;
/// Initialize the prover state to argue for the sum of the input polynomial
/// over {0,1}^`num_vars`.
fn prover_init(polynomial: &Self::VirtualPolynomial) -> Result<Self, PolyIOPErrors> {
let start = start_timer!(|| "sum check prover init");
if polynomial.aux_info.num_variables == 0 {
return Err(PolyIOPErrors::InvalidParameters(
"Attempt to prove a constant.".to_string(),
));
}
end_timer!(start);
Ok(Self {
challenges: Vec::with_capacity(polynomial.aux_info.num_variables),
round: 0,
poly: polynomial.clone(),
extrapolation_aux: (1..polynomial.aux_info.max_degree)
.map(|degree| {
let points = (0..1 + degree as u64).map(F::from).collect::<Vec<_>>();
let weights = barycentric_weights(&points);
(points, weights)
})
.collect(),
})
}
/// Receive message from verifier, generate prover message, and proceed to
/// next round.
///
/// Main algorithm used is from section 3.2 of [XZZPS19](https://eprint.iacr.org/2019/317.pdf#subsection.3.2).
fn prove_round_and_update_state(
&mut self,
challenge: &Option<F>,
) -> Result<Self::ProverMessage, PolyIOPErrors> {
// let start =
// start_timer!(|| format!("sum check prove {}-th round and update state",
// self.round));
if self.round >= self.poly.aux_info.num_variables {
return Err(PolyIOPErrors::InvalidProver(
"Prover is not active".to_string(),
));
}
// let fix_argument = start_timer!(|| "fix argument");
// Step 1:
// fix argument and evaluate f(x) over x_m = r; where r is the challenge
// for the current round, and m is the round number, indexed from 1
//
// i.e.:
// at round m <= n, for each mle g(x_1, ... x_n) within the flattened_mle
// which has already been evaluated to
//
// g(r_1, ..., r_{m-1}, x_m ... x_n)
//
// eval g over r_m, and mutate g to g(r_1, ... r_m,, x_{m+1}... x_n)
let mut flattened_ml_extensions: Vec<DenseMultilinearExtension<F>> = self
.poly
.flattened_ml_extensions
.par_iter()
.map(|x| x.as_ref().clone())
.collect();
if let Some(chal) = challenge {
if self.round == 0 {
return Err(PolyIOPErrors::InvalidProver(
"first round should be prover first.".to_string(),
));
}
self.challenges.push(*chal);
let r = self.challenges[self.round - 1];
// #[cfg(feature = "parallel")]
flattened_ml_extensions
.par_iter_mut()
.for_each(|mle| *mle = fix_variables(mle, &[r]));
// #[cfg(not(feature = "parallel"))]
// flattened_ml_extensions
// .iter_mut()
// .for_each(|mle| *mle = fix_variables(mle, &[r]));
} else if self.round > 0 {
return Err(PolyIOPErrors::InvalidProver(
"verifier message is empty".to_string(),
));
}
// end_timer!(fix_argument);
self.round += 1;
let products_list = self.poly.products.clone();
let mut products_sum = vec![F::zero(); self.poly.aux_info.max_degree + 1];
// Step 2: generate sum for the partial evaluated polynomial:
// f(r_1, ... r_m,, x_{m+1}... x_n)
products_list.iter().for_each(|(coefficient, products)| {
let mut sum = cfg_into_iter!(0..1 << (self.poly.aux_info.num_variables - self.round))
.fold(
|| {
(
vec![(F::zero(), F::zero()); products.len()],
vec![F::zero(); products.len() + 1],
)
},
|(mut buf, mut acc), b| {
buf.iter_mut()
.zip(products.iter())
.for_each(|((eval, step), f)| {
let table = &flattened_ml_extensions[*f];
*eval = table[b << 1];
*step = table[(b << 1) + 1] - table[b << 1];
});
acc[0] += buf.iter().map(|(eval, _)| eval).product::<F>();
acc[1..].iter_mut().for_each(|acc| {
buf.iter_mut().for_each(|(eval, step)| *eval += step as &_);
*acc += buf.iter().map(|(eval, _)| eval).product::<F>();
});
(buf, acc)
},
)
.map(|(_, partial)| partial)
.reduce(
|| vec![F::zero(); products.len() + 1],
|mut sum, partial| {
sum.iter_mut()
.zip(partial.iter())
.for_each(|(sum, partial)| *sum += partial);
sum
},
);
sum.iter_mut().for_each(|sum| *sum *= coefficient);
let extraploation = cfg_into_iter!(0..self.poly.aux_info.max_degree - products.len())
.map(|i| {
let (points, weights) = &self.extrapolation_aux[products.len() - 1];
let at = F::from((products.len() + 1 + i) as u64);
extrapolate(points, weights, &sum, &at)
})
.collect::<Vec<_>>();
products_sum
.iter_mut()
.zip(sum.iter().chain(extraploation.iter()))
.for_each(|(products_sum, sum)| *products_sum += sum);
});
// update prover's state to the partial evaluated polynomial
self.poly.flattened_ml_extensions = flattened_ml_extensions
.par_iter()
.map(|x| Arc::new(x.clone()))
.collect();
Ok(IOPProverMessage {
evaluations: products_sum,
})
}
}
fn barycentric_weights<F: PrimeField>(points: &[F]) -> Vec<F> {
let mut weights = points
.iter()
.enumerate()
.map(|(j, point_j)| {
points
.iter()
.enumerate()
.filter_map(|(i, point_i)| (i != j).then(|| *point_j - point_i))
.reduce(|acc, value| acc * value)
.unwrap_or_else(F::one)
})
.collect::<Vec<_>>();
batch_inversion(&mut weights);
weights
}
fn extrapolate<F: PrimeField>(points: &[F], weights: &[F], evals: &[F], at: &F) -> F {
let (coeffs, sum_inv) = {
let mut coeffs = points.iter().map(|point| *at - point).collect::<Vec<_>>();
batch_inversion(&mut coeffs);
coeffs.iter_mut().zip(weights).for_each(|(coeff, weight)| {
*coeff *= weight;
});
let sum_inv = coeffs.iter().sum::<F>().inverse().unwrap_or_default();
(coeffs, sum_inv)
};
coeffs
.iter()
.zip(evals)
.map(|(coeff, eval)| *coeff * eval)
.sum::<F>()
* sum_inv
}

+ 59
- 0
src/utils/espresso/sum_check/structs.rs

@ -0,0 +1,59 @@
// code forked from:
// https://github.com/EspressoSystems/hyperplonk/tree/main/subroutines/src/poly_iop/sum_check
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! This module defines structs that are shared by all sub protocols.
use crate::utils::virtual_polynomial::VirtualPolynomial;
use ark_ff::PrimeField;
use ark_serialize::CanonicalSerialize;
/// An IOP proof is a collections of
/// - messages from prover to verifier at each round through the interactive
/// protocol.
/// - a point that is generated by the transcript for evaluation
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct IOPProof<F: PrimeField> {
pub point: Vec<F>,
pub proofs: Vec<IOPProverMessage<F>>,
}
/// A message from the prover to the verifier at a given round
/// is a list of evaluations.
#[derive(Clone, Debug, Default, PartialEq, Eq, CanonicalSerialize)]
pub struct IOPProverMessage<F: PrimeField> {
pub(crate) evaluations: Vec<F>,
}
/// Prover State of a PolyIOP.
#[derive(Debug)]
pub struct IOPProverState<F: PrimeField> {
/// sampled randomness given by the verifier
pub challenges: Vec<F>,
/// the current round number
pub(crate) round: usize,
/// pointer to the virtual polynomial
pub(crate) poly: VirtualPolynomial<F>,
/// points with precomputed barycentric weights for extrapolating smaller
/// degree uni-polys to `max_degree + 1` evaluations.
pub(crate) extrapolation_aux: Vec<(Vec<F>, Vec<F>)>,
}
/// Prover State of a PolyIOP
#[derive(Debug)]
pub struct IOPVerifierState<F: PrimeField> {
pub(crate) round: usize,
pub(crate) num_vars: usize,
pub(crate) max_degree: usize,
pub(crate) finished: bool,
/// a list storing the univariate polynomial in evaluation form sent by the
/// prover at each round
pub(crate) polynomials_received: Vec<Vec<F>>,
/// a list storing the randomness sampled by the verifier at each round
pub(crate) challenges: Vec<F>,
}

+ 362
- 0
src/utils/espresso/sum_check/verifier.rs

@ -0,0 +1,362 @@
// code forked from:
// https://github.com/EspressoSystems/hyperplonk/tree/main/subroutines/src/poly_iop/sum_check
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! Verifier subroutines for a SumCheck protocol.
use super::{SumCheckSubClaim, SumCheckVerifier};
use crate::utils::virtual_polynomial::VPAuxInfo;
use ark_ff::PrimeField;
use ark_std::{end_timer, start_timer};
use super::structs::{IOPProverMessage, IOPVerifierState};
use espresso_subroutines::poly_iop::prelude::PolyIOPErrors;
use espresso_transcript::IOPTranscript;
#[cfg(feature = "parallel")]
use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator};
impl<F: PrimeField> SumCheckVerifier<F> for IOPVerifierState<F> {
type VPAuxInfo = VPAuxInfo<F>;
type ProverMessage = IOPProverMessage<F>;
type Challenge = F;
type Transcript = IOPTranscript<F>;
type SumCheckSubClaim = SumCheckSubClaim<F>;
/// Initialize the verifier's state.
fn verifier_init(index_info: &Self::VPAuxInfo) -> Self {
let start = start_timer!(|| "sum check verifier init");
let res = Self {
round: 1,
num_vars: index_info.num_variables,
max_degree: index_info.max_degree,
finished: false,
polynomials_received: Vec::with_capacity(index_info.num_variables),
challenges: Vec::with_capacity(index_info.num_variables),
};
end_timer!(start);
res
}
/// Run verifier for the current round, given a prover message.
///
/// Note that `verify_round_and_update_state` only samples and stores
/// challenges; and update the verifier's state accordingly. The actual
/// verifications are deferred (in batch) to `check_and_generate_subclaim`
/// at the last step.
fn verify_round_and_update_state(
&mut self,
prover_msg: &Self::ProverMessage,
transcript: &mut Self::Transcript,
) -> Result<Self::Challenge, PolyIOPErrors> {
let start =
start_timer!(|| format!("sum check verify {}-th round and update state", self.round));
if self.finished {
return Err(PolyIOPErrors::InvalidVerifier(
"Incorrect verifier state: Verifier is already finished.".to_string(),
));
}
// In an interactive protocol, the verifier should
//
// 1. check if the received 'P(0) + P(1) = expected`.
// 2. set `expected` to P(r)`
//
// When we turn the protocol to a non-interactive one, it is sufficient to defer
// such checks to `check_and_generate_subclaim` after the last round.
let challenge = transcript.get_and_append_challenge(b"Internal round")?;
self.challenges.push(challenge);
self.polynomials_received
.push(prover_msg.evaluations.to_vec());
if self.round == self.num_vars {
// accept and close
self.finished = true;
} else {
// proceed to the next round
self.round += 1;
}
end_timer!(start);
Ok(challenge)
}
/// This function verifies the deferred checks in the interactive version of
/// the protocol; and generate the subclaim. Returns an error if the
/// proof failed to verify.
///
/// If the asserted sum is correct, then the multilinear polynomial
/// evaluated at `subclaim.point` will be `subclaim.expected_evaluation`.
/// Otherwise, it is highly unlikely that those two will be equal.
/// Larger field size guarantees smaller soundness error.
fn check_and_generate_subclaim(
&self,
asserted_sum: &F,
) -> Result<Self::SumCheckSubClaim, PolyIOPErrors> {
let start = start_timer!(|| "sum check check and generate subclaim");
if !self.finished {
return Err(PolyIOPErrors::InvalidVerifier(
"Incorrect verifier state: Verifier has not finished.".to_string(),
));
}
if self.polynomials_received.len() != self.num_vars {
return Err(PolyIOPErrors::InvalidVerifier(
"insufficient rounds".to_string(),
));
}
// the deferred check during the interactive phase:
// 2. set `expected` to P(r)`
#[cfg(feature = "parallel")]
let mut expected_vec = self
.polynomials_received
.clone()
.into_par_iter()
.zip(self.challenges.clone().into_par_iter())
.map(|(evaluations, challenge)| {
if evaluations.len() != self.max_degree + 1 {
return Err(PolyIOPErrors::InvalidVerifier(format!(
"incorrect number of evaluations: {} vs {}",
evaluations.len(),
self.max_degree + 1
)));
}
interpolate_uni_poly::<F>(&evaluations, challenge)
})
.collect::<Result<Vec<_>, PolyIOPErrors>>()?;
#[cfg(not(feature = "parallel"))]
let mut expected_vec = self
.polynomials_received
.clone()
.into_iter()
.zip(self.challenges.clone().into_iter())
.map(|(evaluations, challenge)| {
if evaluations.len() != self.max_degree + 1 {
return Err(PolyIOPErrors::InvalidVerifier(format!(
"incorrect number of evaluations: {} vs {}",
evaluations.len(),
self.max_degree + 1
)));
}
interpolate_uni_poly::<F>(&evaluations, challenge)
})
.collect::<Result<Vec<_>, PolyIOPErrors>>()?;
// insert the asserted_sum to the first position of the expected vector
expected_vec.insert(0, *asserted_sum);
for (evaluations, &expected) in self
.polynomials_received
.iter()
.zip(expected_vec.iter())
.take(self.num_vars)
{
// the deferred check during the interactive phase:
// 1. check if the received 'P(0) + P(1) = expected`.
if evaluations[0] + evaluations[1] != expected {
return Err(PolyIOPErrors::InvalidProof(
"Prover message is not consistent with the claim.".to_string(),
));
}
}
end_timer!(start);
Ok(SumCheckSubClaim {
point: self.challenges.clone(),
// the last expected value (not checked within this function) will be included in the
// subclaim
expected_evaluation: expected_vec[self.num_vars],
})
}
}
/// Interpolate a uni-variate degree-`p_i.len()-1` polynomial and evaluate this
/// polynomial at `eval_at`:
///
/// \sum_{i=0}^len p_i * (\prod_{j!=i} (eval_at - j)/(i-j) )
///
/// This implementation is linear in number of inputs in terms of field
/// operations. It also has a quadratic term in primitive operations which is
/// negligible compared to field operations.
/// TODO: The quadratic term can be removed by precomputing the lagrange
/// coefficients.
pub fn interpolate_uni_poly<F: PrimeField>(p_i: &[F], eval_at: F) -> Result<F, PolyIOPErrors> {
let start = start_timer!(|| "sum check interpolate uni poly opt");
let len = p_i.len();
let mut evals = vec![];
let mut prod = eval_at;
evals.push(eval_at);
// `prod = \prod_{j} (eval_at - j)`
for e in 1..len {
let tmp = eval_at - F::from(e as u64);
evals.push(tmp);
prod *= tmp;
}
let mut res = F::zero();
// we want to compute \prod (j!=i) (i-j) for a given i
//
// we start from the last step, which is
// denom[len-1] = (len-1) * (len-2) *... * 2 * 1
// the step before that is
// denom[len-2] = (len-2) * (len-3) * ... * 2 * 1 * -1
// and the step before that is
// denom[len-3] = (len-3) * (len-4) * ... * 2 * 1 * -1 * -2
//
// i.e., for any i, the one before this will be derived from
// denom[i-1] = denom[i] * (len-i) / i
//
// that is, we only need to store
// - the last denom for i = len-1, and
// - the ratio between current step and fhe last step, which is the product of
// (len-i) / i from all previous steps and we store this product as a fraction
// number to reduce field divisions.
// We know
// - 2^61 < factorial(20) < 2^62
// - 2^122 < factorial(33) < 2^123
// so we will be able to compute the ratio
// - for len <= 20 with i64
// - for len <= 33 with i128
// - for len > 33 with BigInt
if p_i.len() <= 20 {
let last_denominator = F::from(u64_factorial(len - 1));
let mut ratio_numerator = 1i64;
let mut ratio_denominator = 1u64;
for i in (0..len).rev() {
let ratio_numerator_f = if ratio_numerator < 0 {
-F::from((-ratio_numerator) as u64)
} else {
F::from(ratio_numerator as u64)
};
res += p_i[i] * prod * F::from(ratio_denominator)
/ (last_denominator * ratio_numerator_f * evals[i]);
// compute denom for the next step is current_denom * (len-i)/i
if i != 0 {
ratio_numerator *= -(len as i64 - i as i64);
ratio_denominator *= i as u64;
}
}
} else if p_i.len() <= 33 {
let last_denominator = F::from(u128_factorial(len - 1));
let mut ratio_numerator = 1i128;
let mut ratio_denominator = 1u128;
for i in (0..len).rev() {
let ratio_numerator_f = if ratio_numerator < 0 {
-F::from((-ratio_numerator) as u128)
} else {
F::from(ratio_numerator as u128)
};
res += p_i[i] * prod * F::from(ratio_denominator)
/ (last_denominator * ratio_numerator_f * evals[i]);
// compute denom for the next step is current_denom * (len-i)/i
if i != 0 {
ratio_numerator *= -(len as i128 - i as i128);
ratio_denominator *= i as u128;
}
}
} else {
let mut denom_up = field_factorial::<F>(len - 1);
let mut denom_down = F::one();
for i in (0..len).rev() {
res += p_i[i] * prod * denom_down / (denom_up * evals[i]);
// compute denom for the next step is current_denom * (len-i)/i
if i != 0 {
denom_up *= -F::from((len - i) as u64);
denom_down *= F::from(i as u64);
}
}
}
end_timer!(start);
Ok(res)
}
/// compute the factorial(a) = 1 * 2 * ... * a
#[inline]
fn field_factorial<F: PrimeField>(a: usize) -> F {
let mut res = F::one();
for i in 2..=a {
res *= F::from(i as u64);
}
res
}
/// compute the factorial(a) = 1 * 2 * ... * a
#[inline]
fn u128_factorial(a: usize) -> u128 {
let mut res = 1u128;
for i in 2..=a {
res *= i as u128;
}
res
}
/// compute the factorial(a) = 1 * 2 * ... * a
#[inline]
fn u64_factorial(a: usize) -> u64 {
let mut res = 1u64;
for i in 2..=a {
res *= i as u64;
}
res
}
#[cfg(test)]
mod test {
use super::interpolate_uni_poly;
use ark_bls12_377::Fr;
use ark_poly::{univariate::DensePolynomial, DenseUVPolynomial, Polynomial};
use ark_std::{vec::Vec, UniformRand};
use espresso_subroutines::poly_iop::prelude::PolyIOPErrors;
#[test]
fn test_interpolation() -> Result<(), PolyIOPErrors> {
let mut prng = ark_std::test_rng();
// test a polynomial with 20 known points, i.e., with degree 19
let poly = DensePolynomial::<Fr>::rand(20 - 1, &mut prng);
let evals = (0..20)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
// test a polynomial with 33 known points, i.e., with degree 32
let poly = DensePolynomial::<Fr>::rand(33 - 1, &mut prng);
let evals = (0..33)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
// test a polynomial with 64 known points, i.e., with degree 63
let poly = DensePolynomial::<Fr>::rand(64 - 1, &mut prng);
let evals = (0..64)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
Ok(())
}
}

+ 550
- 0
src/utils/espresso/virtual_polynomial.rs

@ -0,0 +1,550 @@
// code forked from
// https://github.com/privacy-scaling-explorations/multifolding-poc/blob/main/src/espresso/virtual_polynomial.rs
//
// Copyright (c) 2023 Espresso Systems (espressosys.com)
// This file is part of the HyperPlonk library.
// You should have received a copy of the MIT License
// along with the HyperPlonk library. If not, see <https://mit-license.org/>.
//! This module defines our main mathematical object `VirtualPolynomial`; and
//! various functions associated with it.
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::CanonicalSerialize;
use ark_std::{end_timer, start_timer};
use rayon::prelude::*;
use std::{cmp::max, collections::HashMap, marker::PhantomData, ops::Add, sync::Arc};
use thiserror::Error;
use ark_std::string::String;
//-- aritherrors
/// A `enum` specifying the possible failure modes of the arithmetics.
#[derive(Error, Debug)]
pub enum ArithErrors {
#[error("Invalid parameters: {0}")]
InvalidParameters(String),
#[error("Should not arrive to this point")]
ShouldNotArrive,
#[error("An error during (de)serialization: {0}")]
SerializationErrors(ark_serialize::SerializationError),
}
impl From<ark_serialize::SerializationError> for ArithErrors {
fn from(e: ark_serialize::SerializationError) -> Self {
Self::SerializationErrors(e)
}
}
//-- aritherrors
#[rustfmt::skip]
/// A virtual polynomial is a sum of products of multilinear polynomials;
/// where the multilinear polynomials are stored via their multilinear
/// extensions: `(coefficient, DenseMultilinearExtension)`
///
/// * Number of products n = `polynomial.products.len()`,
/// * Number of multiplicands of ith product m_i =
/// `polynomial.products[i].1.len()`,
/// * Coefficient of ith product c_i = `polynomial.products[i].0`
///
/// The resulting polynomial is
///
/// $$ \sum_{i=0}^{n} c_i \cdot \prod_{j=0}^{m_i} P_{ij} $$
///
/// Example:
/// f = c0 * f0 * f1 * f2 + c1 * f3 * f4
/// where f0 ... f4 are multilinear polynomials
///
/// - flattened_ml_extensions stores the multilinear extension representation of
/// f0, f1, f2, f3 and f4
/// - products is
/// \[
/// (c0, \[0, 1, 2\]),
/// (c1, \[3, 4\])
/// \]
/// - raw_pointers_lookup_table maps fi to i
///
#[derive(Clone, Debug, Default, PartialEq)]
pub struct VirtualPolynomial<F: PrimeField> {
/// Aux information about the multilinear polynomial
pub aux_info: VPAuxInfo<F>,
/// list of reference to products (as usize) of multilinear extension
pub products: Vec<(F, Vec<usize>)>,
/// Stores multilinear extensions in which product multiplicand can refer
/// to.
pub flattened_ml_extensions: Vec<Arc<DenseMultilinearExtension<F>>>,
/// Pointers to the above poly extensions
raw_pointers_lookup_table: HashMap<*const DenseMultilinearExtension<F>, usize>,
}
#[derive(Clone, Debug, Default, PartialEq, Eq, CanonicalSerialize)]
/// Auxiliary information about the multilinear polynomial
pub struct VPAuxInfo<F: PrimeField> {
/// max number of multiplicands in each product
pub max_degree: usize,
/// number of variables of the polynomial
pub num_variables: usize,
/// Associated field
#[doc(hidden)]
pub phantom: PhantomData<F>,
}
impl<F: PrimeField> Add for &VirtualPolynomial<F> {
type Output = VirtualPolynomial<F>;
fn add(self, other: &VirtualPolynomial<F>) -> Self::Output {
let start = start_timer!(|| "virtual poly add");
let mut res = self.clone();
for products in other.products.iter() {
let cur: Vec<Arc<DenseMultilinearExtension<F>>> = products
.1
.iter()
.map(|&x| other.flattened_ml_extensions[x].clone())
.collect();
res.add_mle_list(cur, products.0)
.expect("add product failed");
}
end_timer!(start);
res
}
}
// TODO: convert this into a trait
impl<F: PrimeField> VirtualPolynomial<F> {
/// Creates an empty virtual polynomial with `num_variables`.
pub fn new(num_variables: usize) -> Self {
VirtualPolynomial {
aux_info: VPAuxInfo {
max_degree: 0,
num_variables,
phantom: PhantomData,
},
products: Vec::new(),
flattened_ml_extensions: Vec::new(),
raw_pointers_lookup_table: HashMap::new(),
}
}
/// Creates an new virtual polynomial from a MLE and its coefficient.
pub fn new_from_mle(mle: &Arc<DenseMultilinearExtension<F>>, coefficient: F) -> Self {
let mle_ptr: *const DenseMultilinearExtension<F> = Arc::as_ptr(mle);
let mut hm = HashMap::new();
hm.insert(mle_ptr, 0);
VirtualPolynomial {
aux_info: VPAuxInfo {
// The max degree is the max degree of any individual variable
max_degree: 1,
num_variables: mle.num_vars,
phantom: PhantomData,
},
// here `0` points to the first polynomial of `flattened_ml_extensions`
products: vec![(coefficient, vec![0])],
flattened_ml_extensions: vec![mle.clone()],
raw_pointers_lookup_table: hm,
}
}
/// Add a product of list of multilinear extensions to self
/// Returns an error if the list is empty, or the MLE has a different
/// `num_vars` from self.
///
/// The MLEs will be multiplied together, and then multiplied by the scalar
/// `coefficient`.
pub fn add_mle_list(
&mut self,
mle_list: impl IntoIterator<Item = Arc<DenseMultilinearExtension<F>>>,
coefficient: F,
) -> Result<(), ArithErrors> {
let mle_list: Vec<Arc<DenseMultilinearExtension<F>>> = mle_list.into_iter().collect();
let mut indexed_product = Vec::with_capacity(mle_list.len());
if mle_list.is_empty() {
return Err(ArithErrors::InvalidParameters(
"input mle_list is empty".to_string(),
));
}
self.aux_info.max_degree = max(self.aux_info.max_degree, mle_list.len());
for mle in mle_list {
if mle.num_vars != self.aux_info.num_variables {
return Err(ArithErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.aux_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Arc::as_ptr(&mle);
if let Some(index) = self.raw_pointers_lookup_table.get(&mle_ptr) {
indexed_product.push(*index)
} else {
let curr_index = self.flattened_ml_extensions.len();
self.flattened_ml_extensions.push(mle.clone());
self.raw_pointers_lookup_table.insert(mle_ptr, curr_index);
indexed_product.push(curr_index);
}
}
self.products.push((coefficient, indexed_product));
Ok(())
}
/// Multiple the current VirtualPolynomial by an MLE:
/// - add the MLE to the MLE list;
/// - multiple each product by MLE and its coefficient.
/// Returns an error if the MLE has a different `num_vars` from self.
pub fn mul_by_mle(
&mut self,
mle: Arc<DenseMultilinearExtension<F>>,
coefficient: F,
) -> Result<(), ArithErrors> {
let start = start_timer!(|| "mul by mle");
if mle.num_vars != self.aux_info.num_variables {
return Err(ArithErrors::InvalidParameters(format!(
"product has a multiplicand with wrong number of variables {} vs {}",
mle.num_vars, self.aux_info.num_variables
)));
}
let mle_ptr: *const DenseMultilinearExtension<F> = Arc::as_ptr(&mle);
// check if this mle already exists in the virtual polynomial
let mle_index = match self.raw_pointers_lookup_table.get(&mle_ptr) {
Some(&p) => p,
None => {
self.raw_pointers_lookup_table
.insert(mle_ptr, self.flattened_ml_extensions.len());
self.flattened_ml_extensions.push(mle);
self.flattened_ml_extensions.len() - 1
}
};
for (prod_coef, indices) in self.products.iter_mut() {
// - add the MLE to the MLE list;
// - multiple each product by MLE and its coefficient.
indices.push(mle_index);
*prod_coef *= coefficient;
}
// increase the max degree by one as the MLE has degree 1.
self.aux_info.max_degree += 1;
end_timer!(start);
Ok(())
}
/// Given virtual polynomial `p(x)` and scalar `s`, compute `s*p(x)`
pub fn scalar_mul(&mut self, s: &F) {
for (prod_coef, _) in self.products.iter_mut() {
*prod_coef *= s;
}
}
/// Evaluate the virtual polynomial at point `point`.
/// Returns an error is point.len() does not match `num_variables`.
pub fn evaluate(&self, point: &[F]) -> Result<F, ArithErrors> {
let start = start_timer!(|| "evaluation");
if self.aux_info.num_variables != point.len() {
return Err(ArithErrors::InvalidParameters(format!(
"wrong number of variables {} vs {}",
self.aux_info.num_variables,
point.len()
)));
}
// Evaluate all the MLEs at `point`
let evals: Vec<F> = self
.flattened_ml_extensions
.iter()
.map(|x| {
x.evaluate(point).unwrap() // safe unwrap here since we have
// already checked that num_var
// matches
})
.collect();
let res = self
.products
.iter()
.map(|(c, p)| *c * p.iter().map(|&i| evals[i]).product::<F>())
.sum();
end_timer!(start);
Ok(res)
}
// Input poly f(x) and a random vector r, output
// \hat f(x) = \sum_{x_i \in eval_x} f(x_i) eq(x, r)
// where
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
//
// This function is used in ZeroCheck.
pub fn build_f_hat(&self, r: &[F]) -> Result<Self, ArithErrors> {
let start = start_timer!(|| "zero check build hat f");
if self.aux_info.num_variables != r.len() {
return Err(ArithErrors::InvalidParameters(format!(
"r.len() is different from number of variables: {} vs {}",
r.len(),
self.aux_info.num_variables
)));
}
let eq_x_r = build_eq_x_r(r)?;
let mut res = self.clone();
res.mul_by_mle(eq_x_r, F::one())?;
end_timer!(start);
Ok(res)
}
}
/// Evaluate eq polynomial.
pub fn eq_eval<F: PrimeField>(x: &[F], y: &[F]) -> Result<F, ArithErrors> {
if x.len() != y.len() {
return Err(ArithErrors::InvalidParameters(
"x and y have different length".to_string(),
));
}
let start = start_timer!(|| "eq_eval");
let mut res = F::one();
for (&xi, &yi) in x.iter().zip(y.iter()) {
let xi_yi = xi * yi;
res *= xi_yi + xi_yi - xi - yi + F::one();
}
end_timer!(start);
Ok(res)
}
/// This function build the eq(x, r) polynomial for any given r.
///
/// Evaluate
/// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
/// over r, which is
/// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r<F: PrimeField>(r: &[F]) -> Result<Arc<DenseMultilinearExtension<F>>, ArithErrors> {
let evals = build_eq_x_r_vec(r)?;
let mle = DenseMultilinearExtension::from_evaluations_vec(r.len(), evals);
Ok(Arc::new(mle))
}
/// This function build the eq(x, r) polynomial for any given r, and output the
/// evaluation of eq(x, r) in its vector form.
///
/// Evaluate
/// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
/// over r, which is
/// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_vec<F: PrimeField>(r: &[F]) -> Result<Vec<F>, ArithErrors> {
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
let mut eval = Vec::new();
build_eq_x_r_helper(r, &mut eval)?;
Ok(eval)
}
/// A helper function to build eq(x, r) recursively.
/// This function takes `r.len()` steps, and for each step it requires a maximum
/// `r.len()-1` multiplications.
fn build_eq_x_r_helper<F: PrimeField>(r: &[F], buf: &mut Vec<F>) -> Result<(), ArithErrors> {
if r.is_empty() {
return Err(ArithErrors::InvalidParameters("r length is 0".to_string()));
} else if r.len() == 1 {
// initializing the buffer with [1-r_0, r_0]
buf.push(F::one() - r[0]);
buf.push(r[0]);
} else {
build_eq_x_r_helper(&r[1..], buf)?;
// suppose at the previous step we received [b_1, ..., b_k]
// for the current step we will need
// if x_0 = 0: (1-r0) * [b_1, ..., b_k]
// if x_0 = 1: r0 * [b_1, ..., b_k]
// let mut res = vec![];
// for &b_i in buf.iter() {
// let tmp = r[0] * b_i;
// res.push(b_i - tmp);
// res.push(tmp);
// }
// *buf = res;
let mut res = vec![F::zero(); buf.len() << 1];
res.par_iter_mut().enumerate().for_each(|(i, val)| {
let bi = buf[i >> 1];
let tmp = r[0] * bi;
if i & 1 == 0 {
*val = bi - tmp;
} else {
*val = tmp;
}
});
*buf = res;
}
Ok(())
}
/// Decompose an integer into a binary vector in little endian.
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
#[cfg(test)]
mod test {
use super::*;
use crate::utils::multilinear_polynomial::tests::random_mle_list;
use ark_bls12_377::Fr;
use ark_ff::UniformRand;
use ark_std::{
rand::{Rng, RngCore},
test_rng,
};
impl<F: PrimeField> VirtualPolynomial<F> {
/// Sample a random virtual polynomial, return the polynomial and its sum.
fn rand<R: RngCore>(
nv: usize,
num_multiplicands_range: (usize, usize),
num_products: usize,
rng: &mut R,
) -> Result<(Self, F), ArithErrors> {
let start = start_timer!(|| "sample random virtual polynomial");
let mut sum = F::zero();
let mut poly = VirtualPolynomial::new(nv);
for _ in 0..num_products {
let num_multiplicands =
rng.gen_range(num_multiplicands_range.0..num_multiplicands_range.1);
let (product, product_sum) = random_mle_list(nv, num_multiplicands, rng);
let coefficient = F::rand(rng);
poly.add_mle_list(product.into_iter(), coefficient)?;
sum += product_sum * coefficient;
}
end_timer!(start);
Ok((poly, sum))
}
}
#[test]
fn test_virtual_polynomial_additions() -> Result<(), ArithErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let c = &a + &b;
assert_eq!(
a.evaluate(base.as_ref())? + b.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
#[test]
fn test_virtual_polynomial_mul_by_mle() -> Result<(), ArithErrors> {
let mut rng = test_rng();
for nv in 2..5 {
for num_products in 2..5 {
let base: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let (a, _a_sum) =
VirtualPolynomial::<Fr>::rand(nv, (2, 3), num_products, &mut rng)?;
let (b, _b_sum) = random_mle_list(nv, 1, &mut rng);
let b_mle = b[0].clone();
let coeff = Fr::rand(&mut rng);
let b_vp = VirtualPolynomial::new_from_mle(&b_mle, coeff);
let mut c = a.clone();
c.mul_by_mle(b_mle, coeff)?;
assert_eq!(
a.evaluate(base.as_ref())? * b_vp.evaluate(base.as_ref())?,
c.evaluate(base.as_ref())?
);
}
}
Ok(())
}
#[test]
fn test_eq_xr() {
let mut rng = test_rng();
for nv in 4..10 {
let r: Vec<Fr> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
let eq_x_r = build_eq_x_r(r.as_ref()).unwrap();
let eq_x_r2 = build_eq_x_r_for_test(r.as_ref());
assert_eq!(eq_x_r, eq_x_r2);
}
}
/// Naive method to build eq(x, r).
/// Only used for testing purpose.
// Evaluate
// eq(x,y) = \prod_i=1^num_var (x_i * y_i + (1-x_i)*(1-y_i))
// over r, which is
// eq(x,y) = \prod_i=1^num_var (x_i * r_i + (1-x_i)*(1-r_i))
fn build_eq_x_r_for_test<F: PrimeField>(r: &[F]) -> Arc<DenseMultilinearExtension<F>> {
// we build eq(x,r) from its evaluations
// we want to evaluate eq(x,r) over x \in {0, 1}^num_vars
// for example, with num_vars = 4, x is a binary vector of 4, then
// 0 0 0 0 -> (1-r0) * (1-r1) * (1-r2) * (1-r3)
// 1 0 0 0 -> r0 * (1-r1) * (1-r2) * (1-r3)
// 0 1 0 0 -> (1-r0) * r1 * (1-r2) * (1-r3)
// 1 1 0 0 -> r0 * r1 * (1-r2) * (1-r3)
// ....
// 1 1 1 1 -> r0 * r1 * r2 * r3
// we will need 2^num_var evaluations
// First, we build array for {1 - r_i}
let one_minus_r: Vec<F> = r.iter().map(|ri| F::one() - ri).collect();
let num_var = r.len();
let mut eval = vec![];
for i in 0..1 << num_var {
let mut current_eval = F::one();
let bit_sequence = bit_decompose(i, num_var);
for (&bit, (ri, one_minus_ri)) in
bit_sequence.iter().zip(r.iter().zip(one_minus_r.iter()))
{
current_eval *= if bit { *ri } else { *one_minus_ri };
}
eval.push(current_eval);
}
let mle = DenseMultilinearExtension::from_evaluations_vec(num_var, eval);
Arc::new(mle)
}
}

+ 6
- 0
src/utils/mod.rs

@ -1 +1,7 @@
pub mod vec;
// expose espresso local modules
pub mod espresso;
pub use crate::utils::espresso::multilinear_polynomial;
pub use crate::utils::espresso::sum_check;
pub use crate::utils::espresso::virtual_polynomial;

+ 1
- 0
src/utils/vec.rs

@ -1,5 +1,6 @@
use ark_ff::PrimeField;
use ark_std::cfg_iter;
use rayon::iter::{IndexedParallelIterator, IntoParallelRefIterator, ParallelIterator};
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SparseMatrix<F: PrimeField> {

Loading…
Cancel
Save