Add IVCProof to the existing folding schemes (Nova,HyperNova,ProtoGalaxy) (#167)

* Add IVCProof to the existing folding schemes (Nova,HyperNova,ProtoGalaxy)

* Implement `from_ivc_proof` for the FoldingSchemes trait (and Nova,
HyperNova, ProtoGalaxy), so that the FoldingScheme IVC's instance can be
constructed from the given parameters and the last IVCProof, which
allows to sent the IVCProof between different parties, so that they can
continue iterating the IVC from the received IVCProof.  Also the
serializers allow for the IVCProof to be sent to a verifier that can
deserialize it and verify it.

This allows to remove the logic from the file
[folding/nova/serialize.rs](f1d82418ba/folding-schemes/src/folding/nova/serialize.rs)
and
[folding/hypernova/serialize.rs](f1d82418ba/folding-schemes/src/folding/hypernova/serialize.rs)
(removing the whole files), which is now covered by the `IVCProof`
generated serializers (generated by macro instead of handwritten), and
the test that the file contained is now abstracted and applied to all
the 3 existing folding schemes (Nova, HyperNova, ProtoGalaxy) at the
folding/mod.rs file.

* update Nova VerifierParams serializers to avoid serializing the R1CS to save big part of the old serialized size

* rm .instances() since it's not needed

* add nova params serialization to nova's ivc test to ensure that IVC verification works with deserialized data

* Add unified FS::ProverParam & VerifierParam serialization & deserialization (for all Nova, HyperNova and ProtoGalaxy), without serializing the R1CS/CCS and thus saving substantial serialized bytes space.

* rm CanonicalDeserialize warnings msgs for VerifierParams
This commit is contained in:
2024-10-11 16:32:35 +02:00
committed by GitHub
parent ed1488978c
commit cb1b8e37aa
20 changed files with 1019 additions and 1025 deletions

View File

@@ -491,7 +491,6 @@ where
pub mod tests {
use ark_pallas::{constraints::GVar, Fq, Fr, Projective};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::One;
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use super::*;
@@ -533,18 +532,9 @@ pub mod tests {
// generate a Nova instance and do a step of it
let mut nova = N::init(&nova_params, F_circuit, z_0.clone()).unwrap();
nova.prove_step(&mut rng, vec![], None).unwrap();
let ivc_v = nova.clone();
let (running_instance, incoming_instance, cyclefold_instance) = ivc_v.instances();
N::verify(
nova_params.1, // verifier_params
z_0,
ivc_v.z_i,
Fr::one(),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
// verify the IVC
let ivc_proof = nova.ivc_proof();
N::verify(nova_params.1, ivc_proof).unwrap();
// load the DeciderCircuit 1 & 2 from the Nova instance
let decider_circuit1 =

View File

@@ -75,8 +75,8 @@ impl<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS> DeciderTrait<C1, C2, FC, FS>
for Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS>
where
C1: CurveGroup,
C2: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
// CS1 is a KZG commitment, where challenge is C1::Fr elem
@@ -343,9 +343,7 @@ pub mod tests {
use super::*;
use crate::commitment::pedersen::Pedersen;
use crate::folding::nova::{
PreprocessorParam, ProverParams as NovaProverParams, VerifierParams as NovaVerifierParams,
};
use crate::folding::nova::{PreprocessorParam, ProverParams as NovaProverParams};
use crate::frontend::utils::CubicFCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
@@ -490,13 +488,15 @@ pub mod tests {
&mut nova_pp_serialized.as_slice()
)
.unwrap();
let nova_vp_deserialized = NovaVerifierParams::<
let nova_vp_deserialized = <N as FoldingScheme<
Projective,
Projective2,
KZG<'static, Bn254>,
Pedersen<Projective2>,
>::deserialize_compressed(
&mut nova_vp_serialized.as_slice()
CubicFCircuit<Fr>,
>>::vp_deserialize_with_mode(
&mut nova_vp_serialized.as_slice(),
ark_serialize::Compress::Yes,
ark_serialize::Validate::Yes,
(), // fcircuit_params
)
.unwrap();

View File

@@ -589,7 +589,7 @@ pub mod tests {
use ark_relations::r1cs::ConstraintSystem;
use ark_std::{
rand::{thread_rng, Rng},
One, UniformRand,
UniformRand,
};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
@@ -810,18 +810,8 @@ pub mod tests {
// generate a Nova instance and do a step of it
let mut nova = N::init(&nova_params, F_circuit, z_0.clone()).unwrap();
nova.prove_step(&mut rng, vec![], None).unwrap();
let ivc_v = nova.clone();
let (running_instance, incoming_instance, cyclefold_instance) = ivc_v.instances();
N::verify(
nova_params.1, // verifier_params
z_0,
ivc_v.z_i,
Fr::one(),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
let ivc_proof = nova.ivc_proof();
N::verify(nova_params.1, ivc_proof).unwrap();
// load the DeciderEthCircuit from the Nova instance
let decider_eth_circuit = DeciderEthCircuit::<

View File

@@ -38,7 +38,6 @@ use crate::{arith::Arith, commitment::CommitmentScheme};
pub mod circuits;
pub mod nifs;
pub mod ova;
pub mod serialize;
pub mod traits;
pub mod zk;
@@ -345,15 +344,6 @@ where
CS2: CommitmentScheme<C2, H>,
{
fn check(&self) -> Result<(), ark_serialize::SerializationError> {
self.poseidon_config.full_rounds.check()?;
self.poseidon_config.partial_rounds.check()?;
self.poseidon_config.alpha.check()?;
self.poseidon_config.ark.check()?;
self.poseidon_config.mds.check()?;
self.poseidon_config.rate.check()?;
self.poseidon_config.capacity.check()?;
self.r1cs.check()?;
self.cf_r1cs.check()?;
self.cs_vp.check()?;
self.cf_cs_vp.check()?;
Ok(())
@@ -371,42 +361,12 @@ where
mut writer: W,
compress: ark_serialize::Compress,
) -> Result<(), ark_serialize::SerializationError> {
self.r1cs.serialize_with_mode(&mut writer, compress)?;
self.cf_r1cs.serialize_with_mode(&mut writer, compress)?;
self.cs_vp.serialize_with_mode(&mut writer, compress)?;
self.cf_cs_vp.serialize_with_mode(&mut writer, compress)
}
fn serialized_size(&self, compress: ark_serialize::Compress) -> usize {
self.r1cs.serialized_size(compress)
+ self.cf_r1cs.serialized_size(compress)
+ self.cs_vp.serialized_size(compress)
+ self.cf_cs_vp.serialized_size(compress)
}
}
impl<C1, C2, CS1, CS2, const H: bool> CanonicalDeserialize for VerifierParams<C1, C2, CS1, CS2, H>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1, H>,
CS2: CommitmentScheme<C2, H>,
{
fn deserialize_with_mode<R: std::io::prelude::Read>(
mut reader: R,
compress: ark_serialize::Compress,
validate: ark_serialize::Validate,
) -> Result<Self, ark_serialize::SerializationError> {
let r1cs = R1CS::deserialize_with_mode(&mut reader, compress, validate)?;
let cf_r1cs = R1CS::deserialize_with_mode(&mut reader, compress, validate)?;
let cs_vp = CS1::VerifierParams::deserialize_with_mode(&mut reader, compress, validate)?;
let cf_cs_vp = CS2::VerifierParams::deserialize_with_mode(&mut reader, compress, validate)?;
Ok(VerifierParams {
poseidon_config: poseidon_canonical_config::<C1::ScalarField>(),
r1cs,
cf_r1cs,
cs_vp,
cf_cs_vp,
})
self.cs_vp.serialized_size(compress) + self.cf_cs_vp.serialized_size(compress)
}
}
@@ -429,6 +389,29 @@ where
}
}
#[derive(PartialEq, Eq, Debug, Clone, CanonicalSerialize, CanonicalDeserialize)]
pub struct IVCProof<C1, C2>
where
C1: CurveGroup,
C2: CurveGroup,
{
// current step of the IVC
pub i: C1::ScalarField,
// initial state
pub z_0: Vec<C1::ScalarField>,
// current state
pub z_i: Vec<C1::ScalarField>,
// running instance
pub W_i: Witness<C1>,
pub U_i: CommittedInstance<C1>,
// incoming instance
pub w_i: Witness<C1>,
pub u_i: CommittedInstance<C1>,
// CycleFold instances
pub cf_W_i: CycleFoldWitness<C2>,
pub cf_U_i: CycleFoldCommittedInstance<C2>,
}
/// Implements Nova+CycleFold's IVC, described in [Nova](https://eprint.iacr.org/2021/370.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait
/// The `H` const generic specifies whether the homorphic commitment scheme is blinding
@@ -500,6 +483,58 @@ where
type IncomingInstance = (CommittedInstance<C1>, Witness<C1>);
type MultiCommittedInstanceWithWitness = ();
type CFInstance = (CycleFoldCommittedInstance<C2>, CycleFoldWitness<C2>);
type IVCProof = IVCProof<C1, C2>;
fn pp_deserialize_with_mode<R: std::io::prelude::Read>(
reader: R,
compress: ark_serialize::Compress,
validate: ark_serialize::Validate,
_fc_params: FC::Params, // FCircuit params
) -> Result<Self::ProverParam, Error> {
Ok(Self::ProverParam::deserialize_with_mode(
reader, compress, validate,
)?)
}
fn vp_deserialize_with_mode<R: std::io::prelude::Read>(
mut reader: R,
compress: ark_serialize::Compress,
validate: ark_serialize::Validate,
fc_params: FC::Params,
) -> Result<Self::VerifierParam, Error> {
let poseidon_config = poseidon_canonical_config::<C1::ScalarField>();
// generate the r1cs & cf_r1cs needed for the VerifierParams. In this way we avoid needing
// to serialize them, saving significant space in the VerifierParams serialized size.
// main circuit R1CS:
let f_circuit = FC::new(fc_params)?;
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&poseidon_config, f_circuit.clone());
augmented_F_circuit.generate_constraints(cs.clone())?;
cs.finalize();
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let r1cs = extract_r1cs::<C1::ScalarField>(&cs);
// CycleFold circuit R1CS
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
let cf_circuit = NovaCycleFoldCircuit::<C1, GC1>::empty();
cf_circuit.generate_constraints(cs2.clone())?;
cs2.finalize();
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
let cs_vp = CS1::VerifierParams::deserialize_with_mode(&mut reader, compress, validate)?;
let cf_cs_vp = CS2::VerifierParams::deserialize_with_mode(&mut reader, compress, validate)?;
Ok(Self::VerifierParam {
poseidon_config,
r1cs,
cf_r1cs,
cs_vp,
cf_cs_vp,
})
}
fn preprocess(
mut rng: impl RngCore,
@@ -874,31 +909,93 @@ where
self.z_i.clone()
}
fn instances(
&self,
) -> (
Self::RunningInstance,
Self::IncomingInstance,
Self::CFInstance,
) {
(
(self.U_i.clone(), self.W_i.clone()),
(self.u_i.clone(), self.w_i.clone()),
(self.cf_U_i.clone(), self.cf_W_i.clone()),
)
fn ivc_proof(&self) -> Self::IVCProof {
Self::IVCProof {
i: self.i,
z_0: self.z_0.clone(),
z_i: self.z_i.clone(),
W_i: self.W_i.clone(),
U_i: self.U_i.clone(),
w_i: self.w_i.clone(),
u_i: self.u_i.clone(),
cf_W_i: self.cf_W_i.clone(),
cf_U_i: self.cf_U_i.clone(),
}
}
/// Implements IVC.V of Nova+CycleFold. Notice that this method does not include the
fn from_ivc_proof(
ivc_proof: IVCProof<C1, C2>,
fcircuit_params: FC::Params,
params: (Self::ProverParam, Self::VerifierParam),
) -> Result<Self, Error> {
let IVCProof {
i,
z_0,
z_i,
W_i,
U_i,
w_i,
u_i,
cf_W_i,
cf_U_i,
} = ivc_proof;
let (pp, vp) = params;
let f_circuit = FC::new(fcircuit_params).unwrap();
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, f_circuit.clone());
let cf_circuit = NovaCycleFoldCircuit::<C1, GC1>::empty();
augmented_F_circuit.generate_constraints(cs.clone())?;
cs.finalize();
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let r1cs = extract_r1cs::<C1::ScalarField>(&cs);
cf_circuit.generate_constraints(cs2.clone())?;
cs2.finalize();
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
Ok(Self {
_gc1: PhantomData,
_c2: PhantomData,
_gc2: PhantomData,
r1cs,
cf_r1cs,
poseidon_config: pp.poseidon_config,
cs_pp: pp.cs_pp,
cf_cs_pp: pp.cf_cs_pp,
F: f_circuit,
pp_hash: vp.pp_hash()?,
i,
z_0,
z_i,
w_i,
u_i,
W_i,
U_i,
cf_W_i,
cf_U_i,
})
}
/// Implements IVC.V of Nov.clone()a+CycleFold. Notice that this method does not include the
/// commitments verification, which is done in the Decider.
fn verify(
vp: Self::VerifierParam,
z_0: Vec<C1::ScalarField>, // initial state
z_i: Vec<C1::ScalarField>, // last state
num_steps: C1::ScalarField,
running_instance: Self::RunningInstance,
incoming_instance: Self::IncomingInstance,
cyclefold_instance: Self::CFInstance,
) -> Result<(), Error> {
fn verify(vp: Self::VerifierParam, ivc_proof: Self::IVCProof) -> Result<(), Error> {
let Self::IVCProof {
i: num_steps,
z_0,
z_i,
W_i,
U_i,
w_i,
u_i,
cf_W_i,
cf_U_i,
} = ivc_proof;
let sponge = PoseidonSponge::<C1::ScalarField>::new(&vp.poseidon_config);
if num_steps == C1::ScalarField::zero() {
@@ -908,10 +1005,6 @@ where
return Ok(());
}
let (U_i, W_i) = running_instance;
let (u_i, w_i) = incoming_instance;
let (cf_U_i, cf_W_i) = cyclefold_instance;
if u_i.x.len() != 2 || U_i.x.len() != 2 {
return Err(Error::IVCVerificationFail);
}
@@ -1175,15 +1268,67 @@ pub mod tests {
}
assert_eq!(Fr::from(num_steps as u32), nova.i);
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
// serialize the Nova Prover & Verifier params. These params are the trusted setup of the commitment schemes used
let mut nova_pp_serialized = vec![];
nova_params
.0
.serialize_compressed(&mut nova_pp_serialized)
.unwrap();
let mut nova_vp_serialized = vec![];
nova_params
.1
.serialize_compressed(&mut nova_vp_serialized)
.unwrap();
// deserialize the Nova params
let _nova_pp_deserialized =
ProverParams::<Projective, Projective2, CS1, CS2, H>::deserialize_compressed(
&mut nova_pp_serialized.as_slice(),
)
.unwrap();
let nova_vp_deserialized = Nova::<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
CS1,
CS2,
H,
>::vp_deserialize_with_mode(
&mut nova_vp_serialized.as_slice(),
ark_serialize::Compress::Yes,
ark_serialize::Validate::Yes,
(), // fcircuit_params
)
.unwrap();
let ivc_proof = nova.ivc_proof();
// serialize IVCProof
let mut ivc_proof_serialized = vec![];
assert!(ivc_proof
.serialize_compressed(&mut ivc_proof_serialized)
.is_ok());
// deserialize IVCProof
let ivc_proof_deserialized = <Nova::<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
CS1,
CS2,
H,
> as FoldingScheme<Projective,Projective2, CubicFCircuit<Fr>>>::IVCProof::deserialize_compressed(
ivc_proof_serialized.as_slice()
)
.unwrap();
// verify the deserialized IVCProof with the deserialized VerifierParams
Nova::<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>, CS1, CS2, H>::verify(
nova_params.1, // Nova's verifier params
z_0.clone(),
nova.z_i.clone(),
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
nova_vp_deserialized, // Nova's verifier params
ivc_proof_deserialized,
)
.unwrap();

View File

@@ -1,268 +0,0 @@
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_r1cs_std::{
groups::{CurveVar, GroupOpsBounds},
ToConstraintFieldGadget,
};
use ark_relations::r1cs::ConstraintSynthesizer;
use ark_relations::r1cs::ConstraintSystem;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, SerializationError, Write};
use std::marker::PhantomData;
use super::{
circuits::AugmentedFCircuit, CommittedInstance, Nova, NovaCycleFoldCircuit, ProverParams,
Witness,
};
use crate::{
arith::r1cs::extract_r1cs,
commitment::CommitmentScheme,
folding::circuits::{CF1, CF2},
frontend::FCircuit,
};
impl<C1, GC1, C2, GC2, FC, CS1, CS2, const H: bool> CanonicalSerialize
for Nova<C1, GC1, C2, GC2, FC, CS1, CS2, H>
where
C1: CurveGroup,
C2: CurveGroup,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1, H>,
CS2: CommitmentScheme<C2, H>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
GC1: CurveVar<C1, <C2 as Group>::ScalarField>,
GC1: ToConstraintFieldGadget<<C2 as Group>::ScalarField>,
GC2: CurveVar<C2, <C2 as CurveGroup>::BaseField>,
{
fn serialize_with_mode<W: Write>(
&self,
mut writer: W,
compress: ark_serialize::Compress,
) -> Result<(), ark_serialize::SerializationError> {
self.pp_hash.serialize_with_mode(&mut writer, compress)?;
self.i.serialize_with_mode(&mut writer, compress)?;
self.z_0.serialize_with_mode(&mut writer, compress)?;
self.z_i.serialize_with_mode(&mut writer, compress)?;
self.w_i.serialize_with_mode(&mut writer, compress)?;
self.u_i.serialize_with_mode(&mut writer, compress)?;
self.W_i.serialize_with_mode(&mut writer, compress)?;
self.U_i.serialize_with_mode(&mut writer, compress)?;
self.cf_W_i.serialize_with_mode(&mut writer, compress)?;
self.cf_U_i.serialize_with_mode(&mut writer, compress)
}
fn serialized_size(&self, compress: ark_serialize::Compress) -> usize {
self.pp_hash.serialized_size(compress)
+ self.i.serialized_size(compress)
+ self.z_0.serialized_size(compress)
+ self.z_i.serialized_size(compress)
+ self.w_i.serialized_size(compress)
+ self.u_i.serialized_size(compress)
+ self.W_i.serialized_size(compress)
+ self.U_i.serialized_size(compress)
+ self.cf_W_i.serialized_size(compress)
+ self.cf_U_i.serialized_size(compress)
}
fn serialize_compressed<W: Write>(
&self,
writer: W,
) -> Result<(), ark_serialize::SerializationError> {
self.serialize_with_mode(writer, ark_serialize::Compress::Yes)
}
fn compressed_size(&self) -> usize {
self.serialized_size(ark_serialize::Compress::Yes)
}
fn serialize_uncompressed<W: Write>(
&self,
writer: W,
) -> Result<(), ark_serialize::SerializationError> {
self.serialize_with_mode(writer, ark_serialize::Compress::No)
}
fn uncompressed_size(&self) -> usize {
self.serialized_size(ark_serialize::Compress::No)
}
}
// Note that we can't derive or implement `CanonicalDeserialize` directly.
// This is because `CurveVar` notably does not implement the `Sync` trait.
impl<C1, GC1, C2, GC2, FC, CS1, CS2, const H: bool> Nova<C1, GC1, C2, GC2, FC, CS1, CS2, H>
where
C1: CurveGroup,
C2: CurveGroup,
FC: FCircuit<CF1<C1>, Params = ()>,
CS1: CommitmentScheme<C1, H>,
CS2: CommitmentScheme<C2, H>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
GC1: CurveVar<C1, <C2 as Group>::ScalarField>,
GC1: ToConstraintFieldGadget<<C2 as Group>::ScalarField>,
GC2: CurveVar<C2, CF2<C2>>,
GC2: ToConstraintFieldGadget<<C2 as CurveGroup>::BaseField>,
{
pub fn deserialize_nova<R: std::io::prelude::Read>(
mut reader: R,
compress: ark_serialize::Compress,
validate: ark_serialize::Validate,
prover_params: ProverParams<C1, C2, CS1, CS2, H>,
poseidon_config: PoseidonConfig<C1::ScalarField>,
) -> Result<Self, ark_serialize::SerializationError> {
let pp_hash = C1::ScalarField::deserialize_with_mode(&mut reader, compress, validate)?;
let i = C1::ScalarField::deserialize_with_mode(&mut reader, compress, validate)?;
let z_0 = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?;
let z_i = Vec::<C1::ScalarField>::deserialize_with_mode(&mut reader, compress, validate)?;
let w_i = Witness::<C1>::deserialize_with_mode(&mut reader, compress, validate)?;
let u_i = CommittedInstance::<C1>::deserialize_with_mode(&mut reader, compress, validate)?;
let W_i = Witness::<C1>::deserialize_with_mode(&mut reader, compress, validate)?;
let U_i = CommittedInstance::<C1>::deserialize_with_mode(&mut reader, compress, validate)?;
let cf_W_i = Witness::<C2>::deserialize_with_mode(&mut reader, compress, validate)?;
let cf_U_i =
CommittedInstance::<C2>::deserialize_with_mode(&mut reader, compress, validate)?;
let f_circuit = FC::new(()).unwrap();
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&poseidon_config, f_circuit.clone());
let cf_circuit = NovaCycleFoldCircuit::<C1, GC1>::empty();
augmented_F_circuit
.generate_constraints(cs.clone())
.map_err(|_| SerializationError::InvalidData)?;
cs.finalize();
let cs = cs.into_inner().ok_or(SerializationError::InvalidData)?;
let r1cs = extract_r1cs::<C1::ScalarField>(&cs);
cf_circuit
.generate_constraints(cs2.clone())
.map_err(|_| SerializationError::InvalidData)?;
cs2.finalize();
let cs2 = cs2.into_inner().ok_or(SerializationError::InvalidData)?;
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
Ok(Nova {
_gc1: PhantomData,
_c2: PhantomData,
_gc2: PhantomData,
r1cs,
cf_r1cs,
poseidon_config,
cs_pp: prover_params.cs_pp,
cf_cs_pp: prover_params.cf_cs_pp,
F: f_circuit,
pp_hash,
i,
z_0,
z_i,
w_i,
u_i,
W_i,
U_i,
cf_W_i,
cf_U_i,
})
}
}
#[cfg(test)]
pub mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use ark_serialize::{CanonicalSerialize, Compress, Validate};
use std::{fs, io::Write};
use crate::{
commitment::{kzg::KZG, pedersen::Pedersen},
folding::nova::{Nova, PreprocessorParam},
frontend::{utils::CubicFCircuit, FCircuit},
transcript::poseidon::poseidon_canonical_config,
FoldingScheme,
};
#[test]
fn test_serde_nova() {
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
// Initialize nova and make multiple `prove_step()`
type N = Nova<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
false,
>;
let prep_param = PreprocessorParam::new(poseidon_config.clone(), F_circuit);
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
let z_0 = vec![Fr::from(3_u32)];
let mut nova = N::init(&nova_params, F_circuit, z_0.clone()).unwrap();
let num_steps: usize = 3;
for _ in 0..num_steps {
nova.prove_step(&mut rng, vec![], None).unwrap();
}
let mut writer = vec![];
assert!(nova
.serialize_with_mode(&mut writer, ark_serialize::Compress::No)
.is_ok());
let mut file = fs::OpenOptions::new()
.create(true)
.write(true)
.open("./nova.serde")
.unwrap();
file.write_all(&writer).unwrap();
let bytes = fs::read("./nova.serde").unwrap();
let mut deserialized_nova = Nova::<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<Bn254>,
Pedersen<Projective2>,
false,
>::deserialize_nova(
bytes.as_slice(),
Compress::No,
Validate::No,
nova_params.0, // Nova's prover params
poseidon_config,
)
.unwrap();
assert_eq!(nova.i, deserialized_nova.i);
let num_steps: usize = 3;
for _ in 0..num_steps {
deserialized_nova
.prove_step(&mut rng, vec![], None)
.unwrap();
nova.prove_step(&mut rng, vec![], None).unwrap();
}
assert_eq!(deserialized_nova.w_i, nova.w_i);
}
}