Implement Nova's NIFS.Verify circuits (with CycleFold) (#11)

* Implement Nova's NIFS.Verify circuits (with CycleFold)

- Add circuit for NIFS.Verify on the main curve to check the folded `u`
  & `x`
- Add circuit for NIFS.Verify on the CycleFold's auxiliary curve to
  check the folded `cm(E)` & `cm(W)`
- Add transcript.get_challenge_nbits
- Add tests for utils::vec.rs

* replace bls12-377 & bw6-761 by pallas & vesta curves (only affects tests)

We will use pallas & vesta curves (for tests only, the non-tests code
uses generics) for the logic that does not require pairings, and while
Grumpkin is not available
(https://github.com/privacy-scaling-explorations/folding-schemes/issues/12).

* update links to papers to markdown style
This commit is contained in:
2023-09-05 17:17:59 +02:00
committed by GitHub
parent 9ae046c4fc
commit d9887af535
16 changed files with 480 additions and 87 deletions

View File

@@ -10,12 +10,12 @@ pub mod r1cs;
use r1cs::R1CS;
/// CCS represents the Customizable Constraint Systems structure defined in
/// https://eprint.iacr.org/2023/552
/// the [CCS paper](https://eprint.iacr.org/2023/552)
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CCS<C: CurveGroup> {
/// m: number of columns in M_i (such that M_i \in F^{m, n})
/// m: number of rows in M_i (such that M_i \in F^{m, n})
pub m: usize,
/// n = |z|, number of rows in M_i
/// n = |z|, number of cols in M_i
pub n: usize,
/// l = |io|, size of public input/output
pub l: usize,
@@ -73,13 +73,13 @@ impl<C: CurveGroup> CCS<C> {
}
impl<C: CurveGroup> CCS<C> {
pub fn from_r1cs(r1cs: R1CS<C::ScalarField>, io_len: usize) -> Self {
let m = r1cs.A.n_cols;
let n = r1cs.A.n_rows;
pub fn from_r1cs(r1cs: R1CS<C::ScalarField>) -> Self {
let m = r1cs.A.n_rows;
let n = r1cs.A.n_cols;
CCS {
m,
n,
l: io_len,
l: r1cs.l,
s: log2(m) as usize,
s_prime: log2(n) as usize,
t: 3,
@@ -105,17 +105,17 @@ impl<C: CurveGroup> CCS<C> {
mod tests {
use super::*;
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z};
use ark_bls12_377::G1Projective;
use ark_pallas::Projective;
pub fn get_test_ccs<C: CurveGroup>() -> CCS<C> {
let r1cs = get_test_r1cs::<C::ScalarField>();
CCS::<C>::from_r1cs(r1cs, 1)
CCS::<C>::from_r1cs(r1cs)
}
/// Test that a basic CCS relation can be satisfied
#[test]
fn test_ccs_relation() {
let ccs = get_test_ccs::<G1Projective>();
let ccs = get_test_ccs::<Projective>();
let z = get_test_z(3);
ccs.check_relation(&z).unwrap();

View File

@@ -19,24 +19,7 @@ impl<F: PrimeField> R1CS<F> {
#[cfg(test)]
pub mod tests {
use super::*;
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
for i in 0..M.len() {
R[i] = vec![F::zero(); M[i].len()];
for j in 0..M[i].len() {
R[i][j] = F::from(M[i][j] as u64);
}
}
R
}
pub fn to_F_vec<F: PrimeField>(z: Vec<usize>) -> Vec<F> {
let mut r: Vec<F> = vec![F::zero(); z.len()];
for i in 0..z.len() {
r[i] = F::from(z[i] as u64);
}
r
}
use crate::utils::vec::tests::{to_F_matrix, to_F_vec};
pub fn get_test_r1cs<F: PrimeField>() -> R1CS<F> {
// R1CS for: x^3 + x + 5 = y (example from article
@@ -72,8 +55,6 @@ pub mod tests {
input * input, // x^2
input * input * input, // x^2 * x
input * input * input + input, // x^3 + x
0, // pad to pow of 2
0,
])
}
}