Implement Nova's NIFS.Verify circuits (with CycleFold) (#11)

* Implement Nova's NIFS.Verify circuits (with CycleFold)

- Add circuit for NIFS.Verify on the main curve to check the folded `u`
  & `x`
- Add circuit for NIFS.Verify on the CycleFold's auxiliary curve to
  check the folded `cm(E)` & `cm(W)`
- Add transcript.get_challenge_nbits
- Add tests for utils::vec.rs

* replace bls12-377 & bw6-761 by pallas & vesta curves (only affects tests)

We will use pallas & vesta curves (for tests only, the non-tests code
uses generics) for the logic that does not require pairings, and while
Grumpkin is not available
(https://github.com/privacy-scaling-explorations/folding-schemes/issues/12).

* update links to papers to markdown style
This commit is contained in:
2023-09-05 17:17:59 +02:00
committed by GitHub
parent 9ae046c4fc
commit d9887af535
16 changed files with 480 additions and 87 deletions

View File

@@ -1,26 +1,28 @@
/// Implements the C_{EC} circuit described in CycleFold paper https://eprint.iacr.org/2023/1192.pdf
/// Implements the C_{EC} circuit described in [CycleFold paper](https://eprint.iacr.org/2023/1192.pdf)
use ark_ec::CurveGroup;
use ark_r1cs_std::{fields::nonnative::NonNativeFieldVar, prelude::CurveVar, ToBitsGadget};
use ark_r1cs_std::{boolean::Boolean, prelude::CurveVar};
use ark_relations::r1cs::SynthesisError;
use core::marker::PhantomData;
use super::ConstraintF;
use super::CF;
/// ECRLC implements gadget that checks the Elliptic Curve points RandomLinearCombination described
/// in CycleFold (https://eprint.iacr.org/2023/1192.pdf).
/// in [CycleFold](https://eprint.iacr.org/2023/1192.pdf).
#[derive(Debug)]
pub struct ECRLC<C: CurveGroup, GC: CurveVar<C, ConstraintF<C>>> {
pub struct ECRLC<C: CurveGroup, GC: CurveVar<C, CF<C>>> {
_c: PhantomData<C>,
_gc: PhantomData<GC>,
}
impl<C: CurveGroup, GC: CurveVar<C, ConstraintF<C>>> ECRLC<C, GC> {
impl<C: CurveGroup, GC: CurveVar<C, CF<C>>> ECRLC<C, GC> {
pub fn check(
r: NonNativeFieldVar<C::ScalarField, ConstraintF<C>>,
// get r in bits format, so it can be reused across many instances of ECRLC gadget,
// reducing the number of constraints needed
r_bits: Vec<Boolean<CF<C>>>,
p1: GC,
p2: GC,
p3: GC,
) -> Result<(), SynthesisError> {
p3.enforce_equal(&(p1 + p2.scalar_mul_le(r.to_bits_le()?.iter())?))?;
p3.enforce_equal(&(p1 + p2.scalar_mul_le(r_bits.iter())?))?;
Ok(())
}
}
@@ -28,35 +30,36 @@ impl<C: CurveGroup, GC: CurveVar<C, ConstraintF<C>>> ECRLC<C, GC> {
#[cfg(test)]
mod test {
use super::*;
use ark_bls12_377::{constraints::G1Var, Fq, Fr, G1Projective};
use ark_ff::{BigInteger, PrimeField};
use ark_pallas::{constraints::GVar, Fq, Fr, Projective};
use ark_r1cs_std::alloc::AllocVar;
use ark_relations::r1cs::ConstraintSystem;
use ark_std::UniformRand;
use std::ops::Mul;
/// Let Curve1=bls12-377::G1 and Curve2=bw6-761::G1. Here we have our constraint system will
/// work over Curve2::Fr = bw6-761::Fr (=bls12-377::Fq), thus our points are P_i \in Curve1
/// (=bls12-377).
/// Let Curve1=pallas and Curve2=vesta. Here our constraints system will work over Curve2::Fr =
/// vesta::Fr (=pallas::Fq), thus our points are P_i \in Curve1 (=pasta).
#[test]
fn test_ecrlc_check() {
let mut rng = ark_std::test_rng();
let r = Fr::rand(&mut rng);
let p1 = G1Projective::rand(&mut rng);
let p2 = G1Projective::rand(&mut rng);
let p1 = Projective::rand(&mut rng);
let p2 = Projective::rand(&mut rng);
let p3 = p1 + p2.mul(r);
let cs = ConstraintSystem::<Fq>::new_ref(); // CS over Curve2::Fr = Curve1::Fq
// prepare circuit inputs
let rVar = NonNativeFieldVar::<Fr, Fq>::new_witness(cs.clone(), || Ok(r)).unwrap();
let p1Var = G1Var::new_witness(cs.clone(), || Ok(p1)).unwrap();
let p2Var = G1Var::new_witness(cs.clone(), || Ok(p2)).unwrap();
let p3Var = G1Var::new_witness(cs.clone(), || Ok(p3)).unwrap();
let rbitsVar: Vec<Boolean<Fq>> =
Vec::new_witness(cs.clone(), || Ok(r.into_bigint().to_bits_le())).unwrap();
let p1Var = GVar::new_witness(cs.clone(), || Ok(p1)).unwrap();
let p2Var = GVar::new_witness(cs.clone(), || Ok(p2)).unwrap();
let p3Var = GVar::new_witness(cs.clone(), || Ok(p3)).unwrap();
// check ECRLC circuit
ECRLC::<G1Projective, G1Var>::check(rVar, p1Var, p2Var, p3Var).unwrap();
ECRLC::<Projective, GVar>::check(rbitsVar, p1Var, p2Var, p3Var).unwrap();
assert!(cs.is_satisfied().unwrap());
// dbg!(cs.num_constraints());
}
}