/** * @author Privacy and Scaling Explorations team - pse.dev * @dev Contains utility functions for ops in BN254; in G_1 mostly. * @notice Forked from https://github.com/weijiekoh/libkzg. * Among others, a few of the changes we did on this fork were: * - Templating the pragma version * - Removing type wrappers and use uints instead * - Performing changes on arg types * - Update some of the `require` statements * - Use the bn254 scalar field instead of checking for overflow on the babyjub prime * - In batch checking, we compute auxiliary polynomials and their commitments at the same time. */ contract KZG10Verifier { // prime of field F_p over which y^2 = x^3 + 3 is defined uint256 public constant BN254_PRIME_FIELD = 21888242871839275222246405745257275088696311157297823662689037894645226208583; uint256 public constant BN254_SCALAR_FIELD = 21888242871839275222246405745257275088548364400416034343698204186575808495617; /** * @notice Performs scalar multiplication in G_1. * @param p G_1 point to multiply * @param s Scalar to multiply by * @return r G_1 point p multiplied by scalar s */ function mulScalar(uint256[2] memory p, uint256 s) internal view returns (uint256[2] memory r) { uint256[3] memory input; input[0] = p[0]; input[1] = p[1]; input[2] = s; bool success; assembly { success := staticcall(sub(gas(), 2000), 7, input, 0x60, r, 0x40) switch success case 0 { invalid() } } require(success, "bn254: scalar mul failed"); } /** * @notice Negates a point in G_1. * @param p G_1 point to negate * @return uint256[2] G_1 point -p */ function negate(uint256[2] memory p) internal pure returns (uint256[2] memory) { if (p[0] == 0 && p[1] == 0) { return p; } return [p[0], BN254_PRIME_FIELD - (p[1] % BN254_PRIME_FIELD)]; } /** * @notice Adds two points in G_1. * @param p1 G_1 point 1 * @param p2 G_1 point 2 * @return r G_1 point p1 + p2 */ function add(uint256[2] memory p1, uint256[2] memory p2) internal view returns (uint256[2] memory r) { bool success; uint256[4] memory input = [p1[0], p1[1], p2[0], p2[1]]; assembly { success := staticcall(sub(gas(), 2000), 6, input, 0x80, r, 0x40) switch success case 0 { invalid() } } require(success, "bn254: point add failed"); } /** * @notice Computes the pairing check e(p1, p2) * e(p3, p4) == 1 * @dev Note that G_2 points a*i + b are encoded as two elements of F_p, (a, b) * @param a_1 G_1 point 1 * @param a_2 G_2 point 1 * @param b_1 G_1 point 2 * @param b_2 G_2 point 2 * @return result true if pairing check is successful */ function pairing(uint256[2] memory a_1, uint256[2][2] memory a_2, uint256[2] memory b_1, uint256[2][2] memory b_2) internal view returns (bool result) { uint256[12] memory input = [ a_1[0], a_1[1], a_2[0][1], // imaginary part first a_2[0][0], a_2[1][1], // imaginary part first a_2[1][0], b_1[0], b_1[1], b_2[0][1], // imaginary part first b_2[0][0], b_2[1][1], // imaginary part first b_2[1][0] ]; uint256[1] memory out; bool success; assembly { success := staticcall(sub(gas(), 2000), 8, input, 0x180, out, 0x20) switch success case 0 { invalid() } } require(success, "bn254: pairing failed"); return out[0] == 1; } uint256[2] G_1 = [ {{ g1.0[0] }}, {{ g1.0[1] }} ]; uint256[2][2] G_2 = [ [ {{ g2.0[0][0] }}, {{ g2.0[0][1] }} ], [ {{ g2.0[1][0] }}, {{ g2.0[1][1] }} ] ]; uint256[2][2] VK = [ [ {{ vk.0[0][0] }}, {{ vk.0[0][1] }} ], [ {{ vk.0[1][0] }}, {{ vk.0[1][1] }} ] ]; {% if g1_crs_len>0 %} // only enabled if g1_crs_len>0, for batch_check uint256[2][{{ g1_crs_len }}] G1_CRS = [ {%- for (i, point) in g1_crs.iter().enumerate() %} [ {{ point.0[0] }}, {{ point.0[1] }} {% if loop.last -%} ] {%- else -%} ], {%- endif -%} {% endfor -%} ]; {%~ endif %} /** * @notice Verifies a single point evaluation proof. Function name follows `ark-poly`. * @dev To avoid ops in G_2, we slightly tweak how the verification is done. * @param c G_1 point commitment to polynomial. * @param pi G_1 point proof. * @param x Value to prove evaluation of polynomial at. * @param y Evaluation poly(x). * @return result Indicates if KZG proof is correct. */ function check(uint256[2] calldata c, uint256[2] calldata pi, uint256 x, uint256 y) public view returns (bool result) { // // we want to: // 1. avoid gas intensive ops in G2 // 2. format the pairing check in line with what the evm opcode expects. // // we can do this by tweaking the KZG check to be: // // e(pi, vk - x * g2) = e(c - y * g1, g2) [initial check] // e(pi, vk - x * g2) * e(c - y * g1, g2)^{-1} = 1 // e(pi, vk - x * g2) * e(-c + y * g1, g2) = 1 [bilinearity of pairing for all subsequent steps] // e(pi, vk) * e(pi, -x * g2) * e(-c + y * g1, g2) = 1 // e(pi, vk) * e(-x * pi, g2) * e(-c + y * g1, g2) = 1 // e(pi, vk) * e(x * -pi - c + y * g1, g2) = 1 [done] // |_ rhs_pairing _| // uint256[2] memory rhs_pairing = add(mulScalar(negate(pi), x), add(negate(c), mulScalar(G_1, y))); return pairing(pi, VK, rhs_pairing, G_2); } function evalPolyAt(uint256[] memory _coefficients, uint256 _index) public pure returns (uint256) { uint256 m = BN254_SCALAR_FIELD; uint256 result = 0; uint256 powerOfX = 1; for (uint256 i = 0; i < _coefficients.length; i++) { uint256 coeff = _coefficients[i]; assembly { result := addmod(result, mulmod(powerOfX, coeff, m), m) powerOfX := mulmod(powerOfX, _index, m) } } return result; } {% if g1_crs_len>0 %} // only enabled if g1_crs_len>0, for batch_check /** * @notice Ensures that z(x) == 0 and l(x) == y for all x in x_vals and y in y_vals. It returns the commitment to z(x) and l(x). * @param z_coeffs coefficients of the zero polynomial z(x) = (x - x_1)(x - x_2)...(x - x_n). * @param l_coeffs coefficients of the lagrange polynomial l(x). * @param x_vals x values to evaluate the polynomials at. * @param y_vals y values to which l(x) should evaluate to. * @return uint256[2] commitment to z(x). * @return uint256[2] commitment to l(x). */ function checkAndCommitAuxPolys( uint256[] memory z_coeffs, uint256[] memory l_coeffs, uint256[] memory x_vals, uint256[] memory y_vals ) public view returns (uint256[2] memory, uint256[2] memory) { // z(x) is of degree len(x_vals), it is a product of linear polynomials (x - x_i) // l(x) is of degree len(x_vals) - 1 uint256[2] memory z_commit; uint256[2] memory l_commit; for (uint256 i = 0; i < x_vals.length; i++) { z_commit = add(z_commit, mulScalar(G1_CRS[i], z_coeffs[i])); // update commitment to z(x) l_commit = add(l_commit, mulScalar(G1_CRS[i], l_coeffs[i])); // update commitment to l(x) uint256 eval_z = evalPolyAt(z_coeffs, x_vals[i]); uint256 eval_l = evalPolyAt(l_coeffs, x_vals[i]); require(eval_z == 0, "checkAndCommitAuxPolys: wrong zero poly"); require(eval_l == y_vals[i], "checkAndCommitAuxPolys: wrong lagrange poly"); } // z(x) has len(x_vals) + 1 coeffs, we add to the commitment the last coeff of z(x) z_commit = add(z_commit, mulScalar(G1_CRS[z_coeffs.length - 1], z_coeffs[z_coeffs.length - 1])); return (z_commit, l_commit); } /** * @notice Verifies a batch of point evaluation proofs. Function name follows `ark-poly`. * @dev To avoid ops in G_2, we slightly tweak how the verification is done. * @param c G1 point commitment to polynomial. * @param pi G2 point proof. * @param x_vals Values to prove evaluation of polynomial at. * @param y_vals Evaluation poly(x). * @param l_coeffs Coefficients of the lagrange polynomial. * @param z_coeffs Coefficients of the zero polynomial z(x) = (x - x_1)(x - x_2)...(x - x_n). * @return result Indicates if KZG proof is correct. */ function batchCheck( uint256[2] calldata c, uint256[2][2] calldata pi, uint256[] calldata x_vals, uint256[] calldata y_vals, uint256[] calldata l_coeffs, uint256[] calldata z_coeffs ) public view returns (bool result) { // // we want to: // 1. avoid gas intensive ops in G2 // 2. format the pairing check in line with what the evm opcode expects. // // we can do this by tweaking the KZG check to be: // // e(z(r) * g1, pi) * e(g1, l(r) * g2) = e(c, g2) [initial check] // e(z(r) * g1, pi) * e(l(r) * g1, g2) * e(c, g2)^{-1} = 1 [bilinearity of pairing] // e(z(r) * g1, pi) * e(l(r) * g1 - c, g2) = 1 [done] // (uint256[2] memory z_commit, uint256[2] memory l_commit) = checkAndCommitAuxPolys(z_coeffs, l_coeffs, x_vals, y_vals); uint256[2] memory neg_commit = negate(c); return pairing(z_commit, pi, add(l_commit, neg_commit), G_2); } {%~ endif %} }