#![allow(non_snake_case)] #![allow(non_upper_case_globals)] #![allow(non_camel_case_types)] #![allow(clippy::upper_case_acronyms)] use ark_ff::PrimeField; use ark_r1cs_std::alloc::AllocVar; use ark_r1cs_std::fields::fp::FpVar; use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError}; use core::marker::PhantomData; use std::time::Instant; use ark_pallas::{constraints::GVar, Fr, Projective}; use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2}; use folding_schemes::commitment::pedersen::Pedersen; use folding_schemes::folding::nova::Nova; use folding_schemes::frontend::FCircuit; use folding_schemes::{Error, FoldingScheme}; mod utils; use utils::test_nova_setup; /// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i /// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which /// we get by applying the step. /// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different /// operations on each of them. #[derive(Clone, Copy, Debug)] pub struct MultiInputsFCircuit { _f: PhantomData, } impl FCircuit for MultiInputsFCircuit { type Params = (); fn new(_params: Self::Params) -> Self { Self { _f: PhantomData } } fn state_len(self) -> usize { 5 } /// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new /// z_{i+1} fn step_native(self, z_i: Vec) -> Result, Error> { let a = z_i[0] + F::from(4_u32); let b = z_i[1] + F::from(40_u32); let c = z_i[2] * F::from(4_u32); let d = z_i[3] * F::from(40_u32); let e = z_i[4] + F::from(100_u32); Ok(vec![a, b, c, d, e]) } /// generates the constraints for the step of F for the given z_i fn generate_step_constraints( self, cs: ConstraintSystemRef, z_i: Vec>, ) -> Result>, SynthesisError> { let four = FpVar::::new_constant(cs.clone(), F::from(4u32))?; let fourty = FpVar::::new_constant(cs.clone(), F::from(40u32))?; let onehundred = FpVar::::new_constant(cs.clone(), F::from(100u32))?; let a = z_i[0].clone() + four.clone(); let b = z_i[1].clone() + fourty.clone(); let c = z_i[2].clone() * four; let d = z_i[3].clone() * fourty; let e = z_i[4].clone() + onehundred; Ok(vec![a, b, c, d, e]) } } /// cargo test --example multi_inputs #[cfg(test)] pub mod tests { use super::*; use ark_r1cs_std::alloc::AllocVar; use ark_relations::r1cs::ConstraintSystem; // test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit #[test] fn test_add_f_circuit() { let cs = ConstraintSystem::::new_ref(); let circuit = MultiInputsFCircuit::::new(()); let z_i = vec![ Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), ]; let z_i1 = circuit.step_native(z_i.clone()).unwrap(); let z_iVar = Vec::>::new_witness(cs.clone(), || Ok(z_i)).unwrap(); let computed_z_i1Var = circuit .generate_step_constraints(cs.clone(), z_iVar.clone()) .unwrap(); assert_eq!(computed_z_i1Var.value().unwrap(), z_i1); } } /// cargo run --release --example multi_inputs fn main() { let num_steps = 10; let initial_state = vec![ Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), Fr::from(1_u32), ]; let F_circuit = MultiInputsFCircuit::::new(()); println!("Prepare Nova ProverParams & VerifierParams"); let (prover_params, verifier_params) = test_nova_setup::>(F_circuit); /// The idea here is that eventually we could replace the next line chunk that defines the /// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme` /// trait, and the rest of our code would be working without needing to be updated. type NOVA = Nova< Projective, GVar, Projective2, GVar2, MultiInputsFCircuit, Pedersen, Pedersen, >; println!("Initialize FoldingScheme"); let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap(); // compute a step of the IVC for i in 0..num_steps { let start = Instant::now(); folding_scheme.prove_step().unwrap(); println!("Nova::prove_step {}: {:?}", i, start.elapsed()); } let (running_instance, incomming_instance, cyclefold_instance) = folding_scheme.instances(); println!("Run the Nova's IVC verifier"); NOVA::verify( verifier_params, initial_state.clone(), folding_scheme.state(), // latest state Fr::from(num_steps as u32), running_instance, incomming_instance, cyclefold_instance, ) .unwrap(); }