#![allow(non_snake_case)] #![allow(non_camel_case_types)] #![allow(clippy::upper_case_acronyms)] /// /// This example performs the full flow: /// - define the circuit to be folded /// - fold the circuit with Nova+CycleFold's IVC /// - generate a DeciderEthCircuit final proof /// - generate the Solidity contract that verifies the proof /// - verify the proof in the EVM /// use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1}; use ark_crypto_primitives::snark::SNARK; use ark_ff::PrimeField; use ark_groth16::VerifyingKey as G16VerifierKey; use ark_groth16::{Groth16, ProvingKey}; use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2}; use ark_poly_commit::kzg10::VerifierKey as KZGVerifierKey; use ark_r1cs_std::alloc::AllocVar; use ark_r1cs_std::fields::fp::FpVar; use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError}; use ark_std::Zero; use std::marker::PhantomData; use std::time::Instant; use folding_schemes::{ commitment::{ kzg::{ProverKey as KZGProverKey, KZG}, pedersen::Pedersen, CommitmentScheme, }, folding::nova::{ decider_eth::{prepare_calldata, Decider as DeciderEth}, decider_eth_circuit::DeciderEthCircuit, get_cs_params_len, Nova, ProverParams, }, frontend::FCircuit, transcript::poseidon::poseidon_test_config, Decider, Error, FoldingScheme, }; use solidity_verifiers::{ evm::{compile_solidity, Evm}, utils::get_function_selector_for_nova_cyclefold_verifier, verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider, NovaCycleFoldVerifierKey, }; /// Test circuit to be folded #[derive(Clone, Copy, Debug)] pub struct CubicFCircuit { _f: PhantomData, } impl FCircuit for CubicFCircuit { type Params = (); fn new(_params: Self::Params) -> Self { Self { _f: PhantomData } } fn state_len(&self) -> usize { 1 } fn step_native(&self, _i: usize, z_i: Vec) -> Result, Error> { Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)]) } fn generate_step_constraints( &self, cs: ConstraintSystemRef, _i: usize, z_i: Vec>, ) -> Result>, SynthesisError> { let five = FpVar::::new_constant(cs.clone(), F::from(5u32))?; let z_i = z_i[0].clone(); Ok(vec![&z_i * &z_i * &z_i + &z_i + &five]) } } #[allow(clippy::type_complexity)] fn init_test_prover_params>() -> ( ProverParams, Pedersen>, KZGVerifierKey, ) { let mut rng = ark_std::test_rng(); let poseidon_config = poseidon_test_config::(); let f_circuit = FC::new(()); let (cs_len, cf_cs_len) = get_cs_params_len::(&poseidon_config, f_circuit).unwrap(); let (kzg_pk, kzg_vk): (KZGProverKey, KZGVerifierKey) = KZG::::setup(&mut rng, cs_len).unwrap(); let (cf_pedersen_params, _) = Pedersen::::setup(&mut rng, cf_cs_len).unwrap(); let fs_prover_params = ProverParams::, Pedersen> { poseidon_config: poseidon_config.clone(), cs_params: kzg_pk.clone(), cf_cs_params: cf_pedersen_params, }; (fs_prover_params, kzg_vk) } /// Initializes Nova parameters and DeciderEth parameters. Only for test purposes. #[allow(clippy::type_complexity)] fn init_params>() -> ( ProverParams, Pedersen>, KZGVerifierKey, ProvingKey, G16VerifierKey, ) { let mut rng = rand::rngs::OsRng; let start = Instant::now(); let (fs_prover_params, kzg_vk) = init_test_prover_params::(); println!("generated Nova folding params: {:?}", start.elapsed()); let f_circuit = FC::new(()); pub type NOVA = Nova, Pedersen>; let z_0 = vec![Fr::zero(); f_circuit.state_len()]; let nova = NOVA::init(&fs_prover_params, f_circuit, z_0.clone()).unwrap(); let decider_circuit = DeciderEthCircuit::, Pedersen>::from_nova::( nova.clone(), ) .unwrap(); let start = Instant::now(); let (g16_pk, g16_vk) = Groth16::::circuit_specific_setup(decider_circuit.clone(), &mut rng).unwrap(); println!( "generated G16 (Decider circuit) params: {:?}", start.elapsed() ); (fs_prover_params, kzg_vk, g16_pk, g16_vk) } fn main() { let n_steps = 10; // set the initial state let z_0 = vec![Fr::from(3_u32)]; let (fs_prover_params, kzg_vk, g16_pk, g16_vk) = init_params::>(); pub type NOVA = Nova, KZG<'static, Bn254>, Pedersen>; pub type DECIDERETH_FCircuit = DeciderEth< G1, GVar, G2, GVar2, CubicFCircuit, KZG<'static, Bn254>, Pedersen, Groth16, NOVA, >; let f_circuit = CubicFCircuit::::new(()); // initialize the folding scheme engine, in our case we use Nova let mut nova = NOVA::init(&fs_prover_params, f_circuit, z_0).unwrap(); // run n steps of the folding iteration for i in 0..n_steps { let start = Instant::now(); nova.prove_step().unwrap(); println!("Nova::prove_step {}: {:?}", i, start.elapsed()); } let rng = rand::rngs::OsRng; let start = Instant::now(); let proof = DECIDERETH_FCircuit::prove( (g16_pk, fs_prover_params.cs_params.clone()), rng, nova.clone(), ) .unwrap(); println!("generated Decider proof: {:?}", start.elapsed()); let verified = DECIDERETH_FCircuit::verify( (g16_vk.clone(), kzg_vk.clone()), nova.i, nova.z_0.clone(), nova.z_i.clone(), &nova.U_i, &nova.u_i, &proof, ) .unwrap(); assert!(verified); println!("Decider proof verification: {}", verified); // Now, let's generate the Solidity code that verifies this Decider final proof let function_selector = get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1); let calldata: Vec = prepare_calldata( function_selector, nova.i, nova.z_0, nova.z_i, &nova.U_i, &nova.u_i, proof, ) .unwrap(); // prepare the setup params for the solidity verifier let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len())); // generate the solidity code let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk); // verify the proof against the solidity code in the EVM let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider"); let mut evm = Evm::default(); let verifier_address = evm.create(nova_cyclefold_verifier_bytecode); let (_, output) = evm.call(verifier_address, calldata.clone()); assert_eq!(*output.last().unwrap(), 1); // save smart contract and the calldata println!("storing nova-verifier.sol and the calldata into files"); use std::fs; fs::write( "./examples/nova-verifier.sol", decider_solidity_code.clone(), ) .unwrap(); fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap(); let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone()); fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect(""); }