#![allow(non_snake_case)]
|
|
#![allow(non_upper_case_globals)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
|
|
use ark_ff::PrimeField;
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use core::marker::PhantomData;
|
|
use std::time::Instant;
|
|
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
|
|
|
|
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
|
|
use folding_schemes::folding::nova::{Nova, PreprocessorParam};
|
|
use folding_schemes::frontend::FCircuit;
|
|
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
|
|
use folding_schemes::{Error, FoldingScheme};
|
|
|
|
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
|
/// denotes the current state which contains 5 elements, and z_{i+1} denotes the next state which
|
|
/// we get by applying the step.
|
|
/// In this example we set z_i and z_{i+1} to have five elements, and at each step we do different
|
|
/// operations on each of them.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct MultiInputsFCircuit<F: PrimeField> {
|
|
_f: PhantomData<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for MultiInputsFCircuit<F> {
|
|
type Params = ();
|
|
|
|
fn new(_params: Self::Params) -> Result<Self, Error> {
|
|
Ok(Self { _f: PhantomData })
|
|
}
|
|
fn state_len(&self) -> usize {
|
|
5
|
|
}
|
|
fn external_inputs_len(&self) -> usize {
|
|
0
|
|
}
|
|
|
|
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
|
/// z_{i+1}
|
|
fn step_native(
|
|
&self,
|
|
_i: usize,
|
|
z_i: Vec<F>,
|
|
_external_inputs: Vec<F>,
|
|
) -> Result<Vec<F>, Error> {
|
|
let a = z_i[0] + F::from(4_u32);
|
|
let b = z_i[1] + F::from(40_u32);
|
|
let c = z_i[2] * F::from(4_u32);
|
|
let d = z_i[3] * F::from(40_u32);
|
|
let e = z_i[4] + F::from(100_u32);
|
|
|
|
Ok(vec![a, b, c, d, e])
|
|
}
|
|
|
|
/// generates the constraints for the step of F for the given z_i
|
|
fn generate_step_constraints(
|
|
&self,
|
|
cs: ConstraintSystemRef<F>,
|
|
_i: usize,
|
|
z_i: Vec<FpVar<F>>,
|
|
_external_inputs: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let four = FpVar::<F>::new_constant(cs.clone(), F::from(4u32))?;
|
|
let forty = FpVar::<F>::new_constant(cs.clone(), F::from(40u32))?;
|
|
let onehundred = FpVar::<F>::new_constant(cs.clone(), F::from(100u32))?;
|
|
let a = z_i[0].clone() + four.clone();
|
|
let b = z_i[1].clone() + forty.clone();
|
|
let c = z_i[2].clone() * four;
|
|
let d = z_i[3].clone() * forty;
|
|
let e = z_i[4].clone() + onehundred;
|
|
|
|
Ok(vec![a, b, c, d, e])
|
|
}
|
|
}
|
|
|
|
/// cargo test --example multi_inputs
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
|
|
// test to check that the MultiInputsFCircuit computes the same values inside and outside the circuit
|
|
#[test]
|
|
fn test_f_circuit() {
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
|
|
let circuit = MultiInputsFCircuit::<Fr>::new(()).unwrap();
|
|
let z_i = vec![
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
];
|
|
|
|
let z_i1 = circuit.step_native(0, z_i.clone(), vec![]).unwrap();
|
|
|
|
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
|
let computed_z_i1Var = circuit
|
|
.generate_step_constraints(cs.clone(), 0, z_iVar.clone(), vec![])
|
|
.unwrap();
|
|
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
|
}
|
|
}
|
|
|
|
/// cargo run --release --example multi_inputs
|
|
fn main() {
|
|
let num_steps = 10;
|
|
let initial_state = vec![
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
Fr::from(1_u32),
|
|
];
|
|
|
|
let F_circuit = MultiInputsFCircuit::<Fr>::new(()).unwrap();
|
|
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
let mut rng = rand::rngs::OsRng;
|
|
|
|
/// The idea here is that eventually we could replace the next line chunk that defines the
|
|
/// `type N = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
|
/// trait, and the rest of our code would be working without needing to be updated.
|
|
type N = Nova<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
MultiInputsFCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<Projective2>,
|
|
false,
|
|
>;
|
|
|
|
println!("Prepare Nova ProverParams & VerifierParams");
|
|
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
|
|
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
|
|
|
|
println!("Initialize FoldingScheme");
|
|
let mut folding_scheme = N::init(&nova_params, F_circuit, initial_state.clone()).unwrap();
|
|
|
|
// compute a step of the IVC
|
|
for i in 0..num_steps {
|
|
let start = Instant::now();
|
|
folding_scheme.prove_step(rng, vec![], None).unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
println!("Run the Nova's IVC verifier");
|
|
let ivc_proof = folding_scheme.ivc_proof();
|
|
N::verify(
|
|
nova_params.1, // Nova's verifier params
|
|
ivc_proof,
|
|
)
|
|
.unwrap();
|
|
}
|