You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

312 lines
11 KiB

/// This file implements the HyperNova's onchain (Ethereum's EVM) decider.
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
use ark_snark::SNARK;
use ark_std::rand::{CryptoRng, RngCore};
use ark_std::{One, Zero};
use core::marker::PhantomData;
pub use super::decider_eth_circuit::DeciderEthCircuit;
use super::{lcccs::LCCCS, HyperNova};
use crate::commitment::{
kzg::Proof as KZGProof, pedersen::Params as PedersenParams, CommitmentScheme,
};
use crate::folding::circuits::{nonnative::affine::NonNativeAffineVar, CF2};
use crate::frontend::FCircuit;
use crate::Error;
use crate::{Decider as DeciderTrait, FoldingScheme};
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Proof<C1, CS1, S>
where
C1: CurveGroup,
CS1: CommitmentScheme<C1, ProverChallenge = C1::ScalarField, Challenge = C1::ScalarField>,
S: SNARK<C1::ScalarField>,
{
snark_proof: S::Proof,
kzg_proof: CS1::Proof,
// rho used at the last fold, U_{i+1}=NIMFS.V(rho, U_i, u_i), it is checked in-circuit
rho: C1::ScalarField,
U_i1: LCCCS<C1>, // U_{i+1}, which is checked in-circuit
// the KZG challenge is provided by the prover, but in-circuit it is checked to match
// the in-circuit computed computed one.
kzg_challenge: C1::ScalarField,
}
/// Onchain Decider, for ethereum use cases
#[derive(Clone, Debug)]
pub struct Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS, const MU: usize, const NU: usize> {
_c1: PhantomData<C1>,
_gc1: PhantomData<GC1>,
_c2: PhantomData<C2>,
_gc2: PhantomData<GC2>,
_fc: PhantomData<FC>,
_cs1: PhantomData<CS1>,
_cs2: PhantomData<CS2>,
_s: PhantomData<S>,
_fs: PhantomData<FS>,
}
impl<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS, const MU: usize, const NU: usize>
DeciderTrait<C1, C2, FC, FS> for Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS, MU, NU>
where
C1: CurveGroup,
C2: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
// CS1 is a KZG commitment, where challenge is C1::Fr elem
CS1: CommitmentScheme<
C1,
ProverChallenge = C1::ScalarField,
Challenge = C1::ScalarField,
Proof = KZGProof<C1>,
>,
// enforce that the CS2 is Pedersen commitment scheme, since we're at Ethereum's EVM decider
CS2: CommitmentScheme<C2, ProverParams = PedersenParams<C2>>,
S: SNARK<C1::ScalarField>,
FS: FoldingScheme<C1, C2, FC>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'b> &'b GC1: GroupOpsBounds<'b, C1, GC1>,
for<'b> &'b GC2: GroupOpsBounds<'b, C2, GC2>,
// constrain FS into HyperNova, since this is a Decider specifically for HyperNova
HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2, MU, NU, false>: From<FS>,
crate::folding::hypernova::ProverParams<C1, C2, CS1, CS2, false>:
From<<FS as FoldingScheme<C1, C2, FC>>::ProverParam>,
crate::folding::hypernova::VerifierParams<C1, C2, CS1, CS2, false>:
From<<FS as FoldingScheme<C1, C2, FC>>::VerifierParam>,
{
type PreprocessorParam = (FS::ProverParam, FS::VerifierParam);
type ProverParam = (S::ProvingKey, CS1::ProverParams);
type Proof = Proof<C1, CS1, S>;
/// VerifierParam = (pp_hash, snark::vk, commitment_scheme::vk)
type VerifierParam = (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams);
type PublicInput = Vec<C1::ScalarField>;
type CommittedInstance = ();
fn preprocess(
mut rng: impl RngCore + CryptoRng,
prep_param: Self::PreprocessorParam,
fs: FS,
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
let circuit =
DeciderEthCircuit::<C1, GC1, C2, GC2, CS1, CS2>::from_hypernova::<FC, MU, NU>(
fs.into(),
)
.unwrap();
// get the Groth16 specific setup for the circuit
let (g16_pk, g16_vk) = S::circuit_specific_setup(circuit, &mut rng).unwrap();
// get the FoldingScheme prover & verifier params from HyperNova
#[allow(clippy::type_complexity)]
let hypernova_pp: <HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2, MU, NU, false> as FoldingScheme<
C1,
C2,
FC,
>>::ProverParam = prep_param.0.into();
#[allow(clippy::type_complexity)]
let hypernova_vp: <HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2, MU, NU, false> as FoldingScheme<
C1,
C2,
FC,
>>::VerifierParam = prep_param.1.into();
let pp_hash = hypernova_vp.pp_hash()?;
let pp = (g16_pk, hypernova_pp.cs_pp);
let vp = (pp_hash, g16_vk, hypernova_vp.cs_vp);
Ok((pp, vp))
}
fn prove(
mut rng: impl RngCore + CryptoRng,
pp: Self::ProverParam,
folding_scheme: FS,
) -> Result<Self::Proof, Error> {
let (snark_pk, cs_pk): (S::ProvingKey, CS1::ProverParams) = pp;
let circuit = DeciderEthCircuit::<C1, GC1, C2, GC2, CS1, CS2>::from_hypernova::<FC, MU, NU>(
folding_scheme.into(),
)?;
let snark_proof = S::prove(&snark_pk, circuit.clone(), &mut rng)
.map_err(|e| Error::Other(e.to_string()))?;
// Notice that since the `circuit` has been constructed at the `from_hypernova` call, which
// in case of failure it would have returned an error there, the next two unwraps should
// never reach an error.
let rho_Fr = circuit.rho.ok_or(Error::Empty)?;
let W_i1 = circuit.W_i1.ok_or(Error::Empty)?;
// get the challenges that have been already computed when preparing the circuit inputs in
// the above `from_hypernova` call
let challenge_W = circuit
.kzg_challenge
.ok_or(Error::MissingValue("kzg_challenge".to_string()))?;
// generate KZG proofs
let U_cmW_proof = CS1::prove_with_challenge(
&cs_pk,
challenge_W,
&W_i1.w,
&C1::ScalarField::zero(),
None,
)?;
Ok(Self::Proof {
snark_proof,
kzg_proof: U_cmW_proof,
rho: rho_Fr,
U_i1: circuit.U_i1.ok_or(Error::Empty)?,
kzg_challenge: challenge_W,
})
}
fn verify(
vp: Self::VerifierParam,
i: C1::ScalarField,
z_0: Vec<C1::ScalarField>,
z_i: Vec<C1::ScalarField>,
// we don't use the instances at the verifier level, since we check them in-circuit
_running_instance: &Self::CommittedInstance,
_incoming_instance: &Self::CommittedInstance,
proof: &Self::Proof,
) -> Result<bool, Error> {
if i <= C1::ScalarField::one() {
return Err(Error::NotEnoughSteps);
}
let (pp_hash, snark_vk, cs_vk): (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams) =
vp;
// Note: the NIMFS proof is checked inside the DeciderEthCircuit, which ensures that the
// 'proof.U_i1' is correctly computed
let (cmC_x, cmC_y) = NonNativeAffineVar::inputize(proof.U_i1.C)?;
let public_input: Vec<C1::ScalarField> = [
vec![pp_hash, i],
z_0,
z_i,
// U_i+1:
cmC_x,
cmC_y,
vec![proof.U_i1.u],
proof.U_i1.x.clone(),
proof.U_i1.r_x.clone(),
proof.U_i1.v.clone(),
vec![proof.kzg_challenge, proof.kzg_proof.eval, proof.rho],
]
.concat();
let snark_v = S::verify(&snark_vk, &public_input, &proof.snark_proof)
.map_err(|e| Error::Other(e.to_string()))?;
if !snark_v {
return Err(Error::SNARKVerificationFail);
}
// we're at the Ethereum EVM case, so the CS1 is KZG commitments
CS1::verify_with_challenge(&cs_vk, proof.kzg_challenge, &proof.U_i1.C, &proof.kzg_proof)?;
Ok(true)
}
}
#[cfg(test)]
pub mod tests {
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_groth16::Groth16;
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use std::time::Instant;
use super::*;
use crate::commitment::{kzg::KZG, pedersen::Pedersen};
use crate::folding::hypernova::PreprocessorParam;
use crate::frontend::utils::CubicFCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
#[test]
fn test_decider() {
const MU: usize = 1;
const NU: usize = 1;
// use HyperNova as FoldingScheme
type HN = HyperNova<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
MU,
NU,
false,
>;
type D = Decider<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
Groth16<Bn254>, // here we define the Snark to use in the decider
HN, // here we define the FoldingScheme to use
MU,
NU,
>;
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let z_0 = vec![Fr::from(3_u32)];
let prep_param = PreprocessorParam::new(poseidon_config, F_circuit);
let hypernova_params = HN::preprocess(&mut rng, &prep_param).unwrap();
let start = Instant::now();
let mut hypernova = HN::init(&hypernova_params, F_circuit, z_0.clone()).unwrap();
println!("Nova initialized, {:?}", start.elapsed());
let start = Instant::now();
hypernova
.prove_step(&mut rng, vec![], Some((vec![], vec![])))
.unwrap();
println!("prove_step, {:?}", start.elapsed());
hypernova
.prove_step(&mut rng, vec![], Some((vec![], vec![])))
.unwrap(); // do a 2nd step
let mut rng = rand::rngs::OsRng;
// prepare the Decider prover & verifier params
let (decider_pp, decider_vp) =
D::preprocess(&mut rng, hypernova_params, hypernova.clone()).unwrap();
// decider proof generation
let start = Instant::now();
let proof = D::prove(rng, decider_pp, hypernova.clone()).unwrap();
println!("Decider prove, {:?}", start.elapsed());
// decider proof verification
let start = Instant::now();
let verified = D::verify(
decider_vp,
hypernova.i,
hypernova.z_0,
hypernova.z_i,
&(),
&(),
&proof,
)
.unwrap();
assert!(verified);
println!("Decider verify, {:?}", start.elapsed());
}
}