You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

123 lines
4.8 KiB

use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, DenseUVPolynomial};
/// Computes the lagrange interpolated polynomial from the given points `p_i`
pub fn compute_lagrange_interpolated_poly<F: PrimeField>(p_i: &[F]) -> DensePolynomial<F> {
// domain is 0..p_i.len(), to fit `interpolate_uni_poly` from hyperplonk
let domain: Vec<usize> = (0..p_i.len()).collect();
// compute l(x), common to every basis polynomial
let mut l_x = DensePolynomial::from_coefficients_vec(vec![F::ONE]);
for x_m in domain.clone() {
let prod_m = DensePolynomial::from_coefficients_vec(vec![-F::from(x_m as u64), F::ONE]);
l_x = &l_x * &prod_m;
}
// compute each w_j - barycentric weights
let mut w_j_vector: Vec<F> = vec![];
for x_j in domain.clone() {
let mut w_j = F::ONE;
for x_m in domain.clone() {
if x_m != x_j {
let prod = (F::from(x_j as u64) - F::from(x_m as u64))
.inverse()
.unwrap(); // an inverse always exists since x_j != x_m (!=0)
// hence, we call unwrap() here without checking the Option's content
w_j *= prod;
}
}
w_j_vector.push(w_j);
}
// compute each polynomial within the sum L(x)
let mut lagrange_poly = DensePolynomial::from_coefficients_vec(vec![F::ZERO]);
for (j, w_j) in w_j_vector.iter().enumerate() {
let x_j = domain[j];
let y_j = p_i[j];
// we multiply by l(x) here, otherwise the below division will not work - deg(0)/deg(d)
let poly_numerator = &(&l_x * (*w_j)) * (y_j);
let poly_denominator =
DensePolynomial::from_coefficients_vec(vec![-F::from(x_j as u64), F::ONE]);
let poly = &poly_numerator / &poly_denominator;
lagrange_poly = &lagrange_poly + &poly;
}
lagrange_poly
}
#[cfg(test)]
mod tests {
use crate::utils::espresso::sum_check::verifier::interpolate_uni_poly;
use crate::utils::lagrange_poly::compute_lagrange_interpolated_poly;
use ark_pallas::Fr;
use ark_poly::{univariate::DensePolynomial, DenseUVPolynomial, Polynomial};
use ark_std::UniformRand;
use espresso_subroutines::poly_iop::prelude::PolyIOPErrors;
#[test]
fn test_compute_lagrange_interpolated_poly() {
let mut prng = ark_std::test_rng();
for degree in 1..30 {
let poly = DensePolynomial::<Fr>::rand(degree, &mut prng);
// range (which is exclusive) is from 0 to degree + 1, since we need degree + 1 evaluations
let evals = (0..(degree + 1))
.map(|i| poly.evaluate(&Fr::from(i as u64)))
.collect::<Vec<Fr>>();
let lagrange_poly = compute_lagrange_interpolated_poly(&evals);
for _ in 0..10 {
let query = Fr::rand(&mut prng);
let lagrange_eval = lagrange_poly.evaluate(&query);
let eval = poly.evaluate(&query);
assert_eq!(eval, lagrange_eval);
assert_eq!(lagrange_poly.degree(), poly.degree());
}
}
}
#[test]
fn test_interpolation() -> Result<(), PolyIOPErrors> {
let mut prng = ark_std::test_rng();
// test a polynomial with 20 known points, i.e., with degree 19
let poly = DensePolynomial::<Fr>::rand(20 - 1, &mut prng);
let evals = (0..20)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
assert_eq!(
compute_lagrange_interpolated_poly(&evals).evaluate(&query),
interpolate_uni_poly(&evals, query)?
);
// test a polynomial with 33 known points, i.e., with degree 32
let poly = DensePolynomial::<Fr>::rand(33 - 1, &mut prng);
let evals = (0..33)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
assert_eq!(
compute_lagrange_interpolated_poly(&evals).evaluate(&query),
interpolate_uni_poly(&evals, query)?
);
// test a polynomial with 64 known points, i.e., with degree 63
let poly = DensePolynomial::<Fr>::rand(64 - 1, &mut prng);
let evals = (0..64)
.map(|i| poly.evaluate(&Fr::from(i)))
.collect::<Vec<Fr>>();
let query = Fr::rand(&mut prng);
assert_eq!(poly.evaluate(&query), interpolate_uni_poly(&evals, query)?);
assert_eq!(
compute_lagrange_interpolated_poly(&evals).evaluate(&query),
interpolate_uni_poly(&evals, query)?
);
Ok(())
}
}