#![allow(non_snake_case)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
///
|
|
/// This example performs the full flow:
|
|
/// - define the circuit to be folded
|
|
/// - fold the circuit with Nova+CycleFold's IVC
|
|
/// - generate a DeciderEthCircuit final proof
|
|
/// - generate the Solidity contract that verifies the proof
|
|
/// - verify the proof in the EVM
|
|
///
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|
use noname::backends::r1cs::R1csBn254Field;
|
|
|
|
use ark_groth16::Groth16;
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|
|
|
use folding_schemes::{
|
|
commitment::{kzg::KZG, pedersen::Pedersen},
|
|
folding::nova::{
|
|
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|
Nova, PreprocessorParam,
|
|
},
|
|
frontend::{noname::NonameFCircuit, FCircuit},
|
|
transcript::poseidon::poseidon_canonical_config,
|
|
Decider, FoldingScheme,
|
|
};
|
|
use std::time::Instant;
|
|
|
|
use solidity_verifiers::{
|
|
evm::{compile_solidity, Evm},
|
|
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|
NovaCycleFoldVerifierKey,
|
|
};
|
|
|
|
fn main() {
|
|
const NONAME_CIRCUIT_EXTERNAL_INPUTS: &str =
|
|
"fn main(pub ivc_inputs: [Field; 2], external_inputs: [Field; 2]) -> [Field; 2] {
|
|
let xx = external_inputs[0] + ivc_inputs[0];
|
|
let yy = external_inputs[1] * ivc_inputs[1];
|
|
assert_eq(yy, xx);
|
|
return [xx, yy];
|
|
}";
|
|
|
|
// set the initial state
|
|
let z_0 = vec![Fr::from(2), Fr::from(5)];
|
|
|
|
// set the external inputs to be used at each step of the IVC, it has length of 10 since this
|
|
// is the number of steps that we will do
|
|
let external_inputs = vec![
|
|
vec![Fr::from(8u32), Fr::from(2u32)],
|
|
vec![Fr::from(40), Fr::from(5)],
|
|
];
|
|
|
|
// initialize the noname circuit
|
|
let f_circuit_params = (NONAME_CIRCUIT_EXTERNAL_INPUTS.to_owned(), 2, 2);
|
|
let f_circuit = NonameFCircuit::<Fr, R1csBn254Field>::new(f_circuit_params).unwrap();
|
|
|
|
pub type N = Nova<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
NonameFCircuit<Fr, R1csBn254Field>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
>;
|
|
pub type D = DeciderEth<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
NonameFCircuit<Fr, R1csBn254Field>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
Groth16<Bn254>,
|
|
N,
|
|
>;
|
|
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
let mut rng = rand::rngs::OsRng;
|
|
|
|
// prepare the Nova prover & verifier params
|
|
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, f_circuit.clone());
|
|
let nova_params = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
|
|
|
|
// initialize the folding scheme engine, in our case we use Nova
|
|
let mut nova = N::init(&nova_params, f_circuit.clone(), z_0).unwrap();
|
|
|
|
// prepare the Decider prover & verifier params
|
|
let (decider_pp, decider_vp) = D::preprocess(&mut rng, nova_params, nova.clone()).unwrap();
|
|
|
|
// run n steps of the folding iteration
|
|
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
|
|
let start = Instant::now();
|
|
nova.prove_step(rng, external_inputs_at_step.clone(), None)
|
|
.unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
let start = Instant::now();
|
|
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
|
|
println!("generated Decider proof: {:?}", start.elapsed());
|
|
|
|
let verified = D::verify(
|
|
decider_vp.clone(),
|
|
nova.i,
|
|
nova.z_0.clone(),
|
|
nova.z_i.clone(),
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
&proof,
|
|
)
|
|
.unwrap();
|
|
assert!(verified);
|
|
println!("Decider proof verification: {}", verified);
|
|
|
|
// Now, let's generate the Solidity code that verifies this Decider final proof
|
|
let function_selector =
|
|
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|
|
|
let calldata: Vec<u8> = prepare_calldata(
|
|
function_selector,
|
|
nova.i,
|
|
nova.z_0,
|
|
nova.z_i,
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
proof,
|
|
)
|
|
.unwrap();
|
|
|
|
// prepare the setup params for the solidity verifier
|
|
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((decider_vp, f_circuit.state_len()));
|
|
|
|
// generate the solidity code
|
|
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|
|
|
// verify the proof against the solidity code in the EVM
|
|
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
|
|
let mut evm = Evm::default();
|
|
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|
assert_eq!(*output.last().unwrap(), 1);
|
|
|
|
// save smart contract and the calldata
|
|
println!("storing nova-verifier.sol and the calldata into files");
|
|
use std::fs;
|
|
fs::write(
|
|
"./examples/nova-verifier.sol",
|
|
decider_solidity_code.clone(),
|
|
)
|
|
.unwrap();
|
|
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|
}
|