#![allow(non_snake_case)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
///
|
|
/// This example performs the full flow:
|
|
/// - define the circuit to be folded
|
|
/// - fold the circuit with Nova+CycleFold's IVC
|
|
/// - generate a DeciderEthCircuit final proof
|
|
/// - generate the Solidity contract that verifies the proof
|
|
/// - verify the proof in the EVM
|
|
///
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as G1};
|
|
|
|
use ark_groth16::Groth16;
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as G2};
|
|
|
|
use std::path::PathBuf;
|
|
use std::time::Instant;
|
|
|
|
use folding_schemes::{
|
|
commitment::{kzg::KZG, pedersen::Pedersen},
|
|
folding::nova::{
|
|
decider_eth::{prepare_calldata, Decider as DeciderEth},
|
|
Nova,
|
|
},
|
|
frontend::{circom::CircomFCircuit, FCircuit},
|
|
Decider, FoldingScheme,
|
|
};
|
|
use solidity_verifiers::{
|
|
evm::{compile_solidity, Evm},
|
|
utils::get_function_selector_for_nova_cyclefold_verifier,
|
|
verifiers::nova_cyclefold::get_decider_template_for_cyclefold_decider,
|
|
NovaCycleFoldVerifierKey,
|
|
};
|
|
|
|
mod utils;
|
|
use utils::init_ivc_and_decider_params;
|
|
|
|
fn main() {
|
|
// set the initial state
|
|
let z_0 = vec![Fr::from(3_u32)];
|
|
|
|
// set the external inputs to be used at each step of the IVC, it has length of 10 since this
|
|
// is the number of steps that we will do
|
|
let external_inputs = vec![
|
|
vec![Fr::from(6u32), Fr::from(7u32)],
|
|
vec![Fr::from(8u32), Fr::from(9u32)],
|
|
vec![Fr::from(10u32), Fr::from(11u32)],
|
|
vec![Fr::from(12u32), Fr::from(13u32)],
|
|
vec![Fr::from(14u32), Fr::from(15u32)],
|
|
vec![Fr::from(6u32), Fr::from(7u32)],
|
|
vec![Fr::from(8u32), Fr::from(9u32)],
|
|
vec![Fr::from(10u32), Fr::from(11u32)],
|
|
vec![Fr::from(12u32), Fr::from(13u32)],
|
|
vec![Fr::from(14u32), Fr::from(15u32)],
|
|
];
|
|
|
|
// initialize the Circom circuit
|
|
let r1cs_path =
|
|
PathBuf::from("./folding-schemes/src/frontend/circom/test_folder/external_inputs.r1cs");
|
|
let wasm_path = PathBuf::from(
|
|
"./folding-schemes/src/frontend/circom/test_folder/external_inputs_js/external_inputs.wasm",
|
|
);
|
|
|
|
let f_circuit_params = (r1cs_path, wasm_path, 1, 2);
|
|
let f_circuit = CircomFCircuit::<Fr>::new(f_circuit_params).unwrap();
|
|
|
|
let (fs_prover_params, kzg_vk, g16_pk, g16_vk) =
|
|
init_ivc_and_decider_params::<CircomFCircuit<Fr>>(f_circuit.clone());
|
|
|
|
pub type NOVA =
|
|
Nova<G1, GVar, G2, GVar2, CircomFCircuit<Fr>, KZG<'static, Bn254>, Pedersen<G2>>;
|
|
pub type DECIDERETH_FCircuit = DeciderEth<
|
|
G1,
|
|
GVar,
|
|
G2,
|
|
GVar2,
|
|
CircomFCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<G2>,
|
|
Groth16<Bn254>,
|
|
NOVA,
|
|
>;
|
|
|
|
// initialize the folding scheme engine, in our case we use Nova
|
|
let mut nova = NOVA::init(&fs_prover_params, f_circuit.clone(), z_0).unwrap();
|
|
// run n steps of the folding iteration
|
|
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
|
|
let start = Instant::now();
|
|
nova.prove_step(external_inputs_at_step.clone()).unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
let rng = rand::rngs::OsRng;
|
|
let start = Instant::now();
|
|
let proof = DECIDERETH_FCircuit::prove(
|
|
(g16_pk, fs_prover_params.cs_params.clone()),
|
|
rng,
|
|
nova.clone(),
|
|
)
|
|
.unwrap();
|
|
println!("generated Decider proof: {:?}", start.elapsed());
|
|
|
|
let verified = DECIDERETH_FCircuit::verify(
|
|
(g16_vk.clone(), kzg_vk.clone()),
|
|
nova.i,
|
|
nova.z_0.clone(),
|
|
nova.z_i.clone(),
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
&proof,
|
|
)
|
|
.unwrap();
|
|
assert!(verified);
|
|
println!("Decider proof verification: {}", verified);
|
|
|
|
// Now, let's generate the Solidity code that verifies this Decider final proof
|
|
let function_selector =
|
|
get_function_selector_for_nova_cyclefold_verifier(nova.z_0.len() * 2 + 1);
|
|
|
|
let calldata: Vec<u8> = prepare_calldata(
|
|
function_selector,
|
|
nova.i,
|
|
nova.z_0,
|
|
nova.z_i,
|
|
&nova.U_i,
|
|
&nova.u_i,
|
|
proof,
|
|
)
|
|
.unwrap();
|
|
|
|
// prepare the setup params for the solidity verifier
|
|
let nova_cyclefold_vk = NovaCycleFoldVerifierKey::from((g16_vk, kzg_vk, f_circuit.state_len()));
|
|
|
|
// generate the solidity code
|
|
let decider_solidity_code = get_decider_template_for_cyclefold_decider(nova_cyclefold_vk);
|
|
|
|
// verify the proof against the solidity code in the EVM
|
|
let nova_cyclefold_verifier_bytecode = compile_solidity(&decider_solidity_code, "NovaDecider");
|
|
let mut evm = Evm::default();
|
|
let verifier_address = evm.create(nova_cyclefold_verifier_bytecode);
|
|
let (_, output) = evm.call(verifier_address, calldata.clone());
|
|
assert_eq!(*output.last().unwrap(), 1);
|
|
|
|
// save smart contract and the calldata
|
|
println!("storing nova-verifier.sol and the calldata into files");
|
|
use std::fs;
|
|
fs::write(
|
|
"./examples/nova-verifier.sol",
|
|
decider_solidity_code.clone(),
|
|
)
|
|
.unwrap();
|
|
fs::write("./examples/solidity-calldata.calldata", calldata.clone()).unwrap();
|
|
let s = solidity_verifiers::utils::get_formatted_calldata(calldata.clone());
|
|
fs::write("./examples/solidity-calldata.inputs", s.join(",\n")).expect("");
|
|
}
|