use crate::utils::espresso::sum_check::SumCheck;
|
|
use crate::utils::virtual_polynomial::VPAuxInfo;
|
|
use crate::{
|
|
transcript::{poseidon::PoseidonTranscript, TranscriptVar},
|
|
utils::sum_check::{structs::IOPProof, IOPSumCheck},
|
|
};
|
|
use ark_crypto_primitives::sponge::Absorb;
|
|
use ark_ec::{CurveGroup, Group};
|
|
/// Heavily inspired from testudo: https://github.com/cryptonetlab/testudo/tree/master
|
|
/// Some changes:
|
|
/// - Typings to better stick to ark_poly's API
|
|
/// - Uses `folding-schemes`' own `TranscriptVar` trait and `PoseidonTranscriptVar` struct
|
|
/// - API made closer to gadgets found in `folding-schemes`
|
|
use ark_ff::PrimeField;
|
|
use ark_poly::{univariate::DensePolynomial, DenseUVPolynomial};
|
|
use ark_r1cs_std::{
|
|
alloc::{AllocVar, AllocationMode},
|
|
eq::EqGadget,
|
|
fields::fp::FpVar,
|
|
};
|
|
use ark_relations::r1cs::{Namespace, SynthesisError};
|
|
use std::{borrow::Borrow, marker::PhantomData};
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct DensePolynomialVar<F: PrimeField> {
|
|
pub coeffs: Vec<FpVar<F>>,
|
|
}
|
|
|
|
impl<F: PrimeField> AllocVar<DensePolynomial<F>, F> for DensePolynomialVar<F> {
|
|
fn new_variable<T: Borrow<DensePolynomial<F>>>(
|
|
cs: impl Into<Namespace<F>>,
|
|
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError> {
|
|
f().and_then(|c| {
|
|
let cs = cs.into();
|
|
let cp: &DensePolynomial<F> = c.borrow();
|
|
let mut coeffs_var = Vec::<FpVar<F>>::with_capacity(cp.coeffs.len());
|
|
for coeff in cp.coeffs.iter() {
|
|
let coeff_var = FpVar::<F>::new_variable(cs.clone(), || Ok(coeff), mode)?;
|
|
coeffs_var.push(coeff_var);
|
|
}
|
|
Ok(Self { coeffs: coeffs_var })
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<F: PrimeField> DensePolynomialVar<F> {
|
|
pub fn eval_at_zero(&self) -> FpVar<F> {
|
|
self.coeffs[0].clone()
|
|
}
|
|
|
|
pub fn eval_at_one(&self) -> FpVar<F> {
|
|
let mut res = self.coeffs[0].clone();
|
|
for i in 1..self.coeffs.len() {
|
|
res = &res + &self.coeffs[i];
|
|
}
|
|
res
|
|
}
|
|
|
|
pub fn evaluate(&self, r: &FpVar<F>) -> FpVar<F> {
|
|
let mut eval = self.coeffs[0].clone();
|
|
let mut power = r.clone();
|
|
|
|
for i in 1..self.coeffs.len() {
|
|
eval += &power * &self.coeffs[i];
|
|
power *= r;
|
|
}
|
|
eval
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct IOPProofVar<C: CurveGroup> {
|
|
// We have to be generic over a CurveGroup because instantiating a IOPProofVar will call IOPSumCheck which requires a CurveGroup
|
|
pub proofs: Vec<DensePolynomialVar<C::ScalarField>>,
|
|
pub claim: FpVar<C::ScalarField>,
|
|
}
|
|
|
|
impl<C: CurveGroup> AllocVar<IOPProof<C::ScalarField>, C::ScalarField> for IOPProofVar<C>
|
|
where
|
|
<C as Group>::ScalarField: Absorb,
|
|
{
|
|
fn new_variable<T: Borrow<IOPProof<C::ScalarField>>>(
|
|
cs: impl Into<Namespace<C::ScalarField>>,
|
|
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError> {
|
|
f().and_then(|c| {
|
|
let cs = cs.into();
|
|
let cp: &IOPProof<C::ScalarField> = c.borrow();
|
|
let claim = IOPSumCheck::<C, PoseidonTranscript<C>>::extract_sum(cp);
|
|
let claim = FpVar::<C::ScalarField>::new_variable(cs.clone(), || Ok(claim), mode)?;
|
|
let mut proofs =
|
|
Vec::<DensePolynomialVar<C::ScalarField>>::with_capacity(cp.proofs.len());
|
|
for proof in cp.proofs.iter() {
|
|
let poly = DensePolynomial::from_coefficients_slice(&proof.coeffs);
|
|
let proof = DensePolynomialVar::<C::ScalarField>::new_variable(
|
|
cs.clone(),
|
|
|| Ok(poly),
|
|
mode,
|
|
)?;
|
|
proofs.push(proof);
|
|
}
|
|
Ok(Self { proofs, claim })
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct VPAuxInfoVar<F: PrimeField> {
|
|
pub num_variables: FpVar<F>,
|
|
pub max_degree: FpVar<F>,
|
|
}
|
|
|
|
impl<F: PrimeField> AllocVar<VPAuxInfo<F>, F> for VPAuxInfoVar<F> {
|
|
fn new_variable<T: Borrow<VPAuxInfo<F>>>(
|
|
cs: impl Into<Namespace<F>>,
|
|
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError> {
|
|
f().and_then(|c| {
|
|
let cs = cs.into();
|
|
let cp: &VPAuxInfo<F> = c.borrow();
|
|
let num_variables = FpVar::<F>::new_variable(
|
|
cs.clone(),
|
|
|| Ok(F::from(cp.num_variables as u64)),
|
|
mode,
|
|
)?;
|
|
let max_degree =
|
|
FpVar::<F>::new_variable(cs.clone(), || Ok(F::from(cp.max_degree as u64)), mode)?;
|
|
Ok(Self {
|
|
num_variables,
|
|
max_degree,
|
|
})
|
|
})
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone)]
|
|
pub struct SumCheckVerifierGadget<C: CurveGroup> {
|
|
_f: PhantomData<C>,
|
|
}
|
|
|
|
impl<C: CurveGroup> SumCheckVerifierGadget<C> {
|
|
#[allow(clippy::type_complexity)]
|
|
pub fn verify(
|
|
iop_proof_var: &IOPProofVar<C>,
|
|
poly_aux_info_var: &VPAuxInfoVar<C::ScalarField>,
|
|
transcript_var: &mut impl TranscriptVar<C::ScalarField>,
|
|
) -> Result<(Vec<FpVar<C::ScalarField>>, Vec<FpVar<C::ScalarField>>), SynthesisError> {
|
|
let mut e_vars = vec![iop_proof_var.claim.clone()];
|
|
let mut r_vars: Vec<FpVar<C::ScalarField>> = Vec::new();
|
|
transcript_var.absorb(poly_aux_info_var.num_variables.clone())?;
|
|
transcript_var.absorb(poly_aux_info_var.max_degree.clone())?;
|
|
|
|
for poly_var in iop_proof_var.proofs.iter() {
|
|
let res = poly_var.eval_at_one() + poly_var.eval_at_zero();
|
|
let e_var = e_vars.last().ok_or(SynthesisError::Unsatisfiable)?;
|
|
res.enforce_equal(e_var)?;
|
|
transcript_var.absorb_vec(&poly_var.coeffs)?;
|
|
let r_i_var = transcript_var.get_challenge()?;
|
|
e_vars.push(poly_var.evaluate(&r_i_var));
|
|
r_vars.push(r_i_var);
|
|
}
|
|
|
|
Ok((e_vars, r_vars))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::{
|
|
folding::circuits::sum_check::{IOPProofVar, VPAuxInfoVar},
|
|
transcript::{
|
|
poseidon::{poseidon_test_config, PoseidonTranscript, PoseidonTranscriptVar},
|
|
Transcript, TranscriptVar,
|
|
},
|
|
utils::{
|
|
sum_check::{structs::IOPProof, IOPSumCheck, SumCheck},
|
|
virtual_polynomial::VirtualPolynomial,
|
|
},
|
|
};
|
|
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
|
|
use ark_ec::CurveGroup;
|
|
use ark_ff::Field;
|
|
use ark_pallas::{Fr, Projective};
|
|
use ark_poly::{
|
|
univariate::DensePolynomial, DenseMultilinearExtension, DenseUVPolynomial,
|
|
MultilinearExtension, Polynomial,
|
|
};
|
|
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
use std::sync::Arc;
|
|
|
|
use super::SumCheckVerifierGadget;
|
|
|
|
pub type TestSumCheckProof<F> = (VirtualPolynomial<F>, PoseidonConfig<F>, IOPProof<F>);
|
|
|
|
/// Primarily used for testing the sumcheck gadget
|
|
/// Returns a random virtual polynomial, the poseidon config used and the associated sumcheck proof
|
|
pub fn get_test_sumcheck_proof<C: CurveGroup>(
|
|
num_vars: usize,
|
|
) -> TestSumCheckProof<C::ScalarField>
|
|
where
|
|
<C as ark_ec::Group>::ScalarField: Absorb,
|
|
{
|
|
let mut rng = ark_std::test_rng();
|
|
let poseidon_config: PoseidonConfig<C::ScalarField> =
|
|
poseidon_test_config::<C::ScalarField>();
|
|
let mut poseidon_transcript_prove = PoseidonTranscript::<C>::new(&poseidon_config);
|
|
let poly_mle = DenseMultilinearExtension::rand(num_vars, &mut rng);
|
|
let virtual_poly =
|
|
VirtualPolynomial::new_from_mle(&Arc::new(poly_mle), C::ScalarField::ONE);
|
|
let sum_check: IOPProof<C::ScalarField> = IOPSumCheck::<C, PoseidonTranscript<C>>::prove(
|
|
&virtual_poly,
|
|
&mut poseidon_transcript_prove,
|
|
)
|
|
.unwrap();
|
|
(virtual_poly, poseidon_config, sum_check)
|
|
}
|
|
|
|
#[test]
|
|
fn test_sum_check_circuit() {
|
|
for num_vars in 1..15 {
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
let (virtual_poly, poseidon_config, sum_check) =
|
|
get_test_sumcheck_proof::<Projective>(num_vars);
|
|
let mut poseidon_var: PoseidonTranscriptVar<Fr> =
|
|
PoseidonTranscriptVar::new(cs.clone(), &poseidon_config);
|
|
let iop_proof_var =
|
|
IOPProofVar::<Projective>::new_witness(cs.clone(), || Ok(&sum_check)).unwrap();
|
|
let poly_aux_info_var =
|
|
VPAuxInfoVar::<Fr>::new_witness(cs.clone(), || Ok(virtual_poly.aux_info)).unwrap();
|
|
let res = SumCheckVerifierGadget::<Projective>::verify(
|
|
&iop_proof_var,
|
|
&poly_aux_info_var,
|
|
&mut poseidon_var,
|
|
);
|
|
|
|
assert!(res.is_ok());
|
|
let (circuit_evals, r_challenges) = res.unwrap();
|
|
|
|
// 1. assert claim from circuit is equal to the one from the sum-check
|
|
let claim: Fr =
|
|
IOPSumCheck::<Projective, PoseidonTranscript<Projective>>::extract_sum(&sum_check);
|
|
assert_eq!(circuit_evals[0].value().unwrap(), claim);
|
|
|
|
// 2. assert that all in-circuit evaluations are equal to the ones from the sum-check
|
|
for ((proof, point), circuit_eval) in sum_check
|
|
.proofs
|
|
.iter()
|
|
.zip(sum_check.point.iter())
|
|
.zip(circuit_evals.iter().skip(1))
|
|
// we skip the first one since it's the above checked claim
|
|
{
|
|
let poly = DensePolynomial::from_coefficients_slice(&proof.coeffs);
|
|
let eval = poly.evaluate(point);
|
|
assert_eq!(eval, circuit_eval.value().unwrap());
|
|
}
|
|
|
|
// 3. assert that all challenges are equal to the ones from the sum-check
|
|
for (point, r_challenge) in sum_check.point.iter().zip(r_challenges.iter()) {
|
|
assert_eq!(*point, r_challenge.value().unwrap());
|
|
}
|
|
|
|
assert!(cs.is_satisfied().unwrap());
|
|
}
|
|
}
|
|
}
|