#![allow(non_snake_case)]
|
|
#![allow(non_upper_case_globals)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
|
|
use ark_crypto_primitives::{
|
|
crh::{
|
|
poseidon::constraints::{CRHGadget, CRHParametersVar},
|
|
poseidon::CRH,
|
|
CRHScheme, CRHSchemeGadget,
|
|
},
|
|
sponge::{poseidon::PoseidonConfig, Absorb},
|
|
};
|
|
use ark_ff::PrimeField;
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
|
|
use ark_r1cs_std::alloc::AllocVar;
|
|
use ark_r1cs_std::fields::fp::FpVar;
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use core::marker::PhantomData;
|
|
use std::time::Instant;
|
|
|
|
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
|
|
use folding_schemes::folding::nova::Nova;
|
|
use folding_schemes::frontend::FCircuit;
|
|
use folding_schemes::{Error, FoldingScheme};
|
|
mod utils;
|
|
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
|
|
use utils::init_nova_ivc_params;
|
|
|
|
/// This is the circuit that we want to fold, it implements the FCircuit trait. The parameter z_i
|
|
/// denotes the current state which contains 1 element, and z_{i+1} denotes the next state which we
|
|
/// get by applying the step.
|
|
///
|
|
/// In this example we set the state to be the previous state together with an external input, and
|
|
/// the new state is an array which contains the new state.
|
|
///
|
|
/// This is useful for example if we want to fold multiple verifications of signatures, where the
|
|
/// circuit F checks the signature and is folded for each of the signatures and public keys. To
|
|
/// keep things simpler, the following example does not verify signatures but does a similar
|
|
/// approach with a chain of hashes, where each iteration hashes the previous step output (z_i)
|
|
/// together with an external input (w_i).
|
|
///
|
|
/// w_1 w_2 w_3 w_4
|
|
/// │ │ │ │
|
|
/// ▼ ▼ ▼ ▼
|
|
/// ┌─┐ ┌─┐ ┌─┐ ┌─┐
|
|
/// ─────►│F├────►│F├────►│F├────►│F├────►
|
|
/// z_1 └─┘ z_2 └─┘ z_3 └─┘ z_4 └─┘ z_5
|
|
///
|
|
///
|
|
/// where each F is:
|
|
/// w_i
|
|
/// │ ┌────────────────────┐
|
|
/// │ │FCircuit │
|
|
/// │ │ │
|
|
/// └────►│ h =Hash(z_i[0],w_i)│
|
|
/// ────────►│ │ ├───────►
|
|
/// z_i │ └──►z_{i+1}=[h] │ z_{i+1}
|
|
/// │ │
|
|
/// └────────────────────┘
|
|
///
|
|
/// where each w_i value is set at the external_inputs array.
|
|
///
|
|
/// The last state z_i is used together with the external input w_i as inputs to compute the new
|
|
/// state z_{i+1}.
|
|
#[derive(Clone, Debug)]
|
|
pub struct ExternalInputsCircuits<F: PrimeField>
|
|
where
|
|
F: Absorb,
|
|
{
|
|
_f: PhantomData<F>,
|
|
poseidon_config: PoseidonConfig<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for ExternalInputsCircuits<F>
|
|
where
|
|
F: Absorb,
|
|
{
|
|
type Params = PoseidonConfig<F>;
|
|
|
|
fn new(params: Self::Params) -> Result<Self, Error> {
|
|
Ok(Self {
|
|
_f: PhantomData,
|
|
poseidon_config: params,
|
|
})
|
|
}
|
|
fn state_len(&self) -> usize {
|
|
1
|
|
}
|
|
fn external_inputs_len(&self) -> usize {
|
|
1
|
|
}
|
|
|
|
/// computes the next state value for the step of F for the given z_i and external_inputs
|
|
/// z_{i+1}
|
|
fn step_native(
|
|
&self,
|
|
_i: usize,
|
|
z_i: Vec<F>,
|
|
external_inputs: Vec<F>,
|
|
) -> Result<Vec<F>, Error> {
|
|
let hash_input: [F; 2] = [z_i[0], external_inputs[0]];
|
|
let h = CRH::<F>::evaluate(&self.poseidon_config, hash_input).unwrap();
|
|
Ok(vec![h])
|
|
}
|
|
|
|
/// generates the constraints and returns the next state value for the step of F for the given
|
|
/// z_i and external_inputs
|
|
fn generate_step_constraints(
|
|
&self,
|
|
cs: ConstraintSystemRef<F>,
|
|
_i: usize,
|
|
z_i: Vec<FpVar<F>>,
|
|
external_inputs: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let crh_params =
|
|
CRHParametersVar::<F>::new_constant(cs.clone(), self.poseidon_config.clone())?;
|
|
let hash_input: [FpVar<F>; 2] = [z_i[0].clone(), external_inputs[0].clone()];
|
|
let h = CRHGadget::<F>::evaluate(&crh_params, &hash_input)?;
|
|
Ok(vec![h])
|
|
}
|
|
}
|
|
|
|
/// cargo test --example external_inputs
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_r1cs_std::R1CSVar;
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
|
|
// test to check that the ExternalInputsCircuits computes the same values inside and outside the circuit
|
|
#[test]
|
|
fn test_f_circuit() {
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
|
|
let circuit = ExternalInputsCircuits::<Fr>::new(poseidon_config).unwrap();
|
|
let z_i = vec![Fr::from(1_u32)];
|
|
let external_inputs = vec![Fr::from(3_u32)];
|
|
|
|
let z_i1 = circuit
|
|
.step_native(0, z_i.clone(), external_inputs.clone())
|
|
.unwrap();
|
|
|
|
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
|
let external_inputsVar =
|
|
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(external_inputs)).unwrap();
|
|
|
|
let computed_z_i1Var = circuit
|
|
.generate_step_constraints(cs.clone(), 0, z_iVar, external_inputsVar)
|
|
.unwrap();
|
|
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
|
}
|
|
}
|
|
|
|
/// cargo run --release --example external_inputs
|
|
fn main() {
|
|
let num_steps = 5;
|
|
let initial_state = vec![Fr::from(1_u32)];
|
|
|
|
// prepare the external inputs to be used at each folding step
|
|
let external_inputs = vec![
|
|
vec![Fr::from(3_u32)],
|
|
vec![Fr::from(33_u32)],
|
|
vec![Fr::from(73_u32)],
|
|
vec![Fr::from(103_u32)],
|
|
vec![Fr::from(125_u32)],
|
|
];
|
|
assert_eq!(external_inputs.len(), num_steps);
|
|
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
let F_circuit = ExternalInputsCircuits::<Fr>::new(poseidon_config).unwrap();
|
|
|
|
println!("Prepare Nova ProverParams & VerifierParams");
|
|
let (prover_params, verifier_params, _) =
|
|
init_nova_ivc_params::<ExternalInputsCircuits<Fr>>(F_circuit.clone());
|
|
|
|
/// The idea here is that eventually we could replace the next line chunk that defines the
|
|
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
|
/// trait, and the rest of our code would be working without needing to be updated.
|
|
type NOVA = Nova<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
ExternalInputsCircuits<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<Projective2>,
|
|
>;
|
|
|
|
println!("Initialize FoldingScheme");
|
|
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
|
|
|
// compute a step of the IVC
|
|
for (i, external_inputs_at_step) in external_inputs.iter().enumerate() {
|
|
let start = Instant::now();
|
|
folding_scheme
|
|
.prove_step(external_inputs_at_step.clone())
|
|
.unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
println!(
|
|
"state at last step (after {} iterations): {:?}",
|
|
num_steps,
|
|
folding_scheme.state()
|
|
);
|
|
|
|
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
|
|
|
|
println!("Run the Nova's IVC verifier");
|
|
NOVA::verify(
|
|
verifier_params,
|
|
initial_state.clone(),
|
|
folding_scheme.state(), // latest state
|
|
Fr::from(num_steps as u32),
|
|
running_instance,
|
|
incoming_instance,
|
|
cyclefold_instance,
|
|
)
|
|
.unwrap();
|
|
}
|