You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

567 lines
19 KiB

/// Implementation of [HyperNova](https://eprint.iacr.org/2023/573.pdf) NIMFS verifier circuit
use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_ff::PrimeField;
use ark_r1cs_std::{
alloc::{AllocVar, AllocationMode},
eq::EqGadget,
fields::{fp::FpVar, FieldVar},
};
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
use core::{borrow::Borrow, marker::PhantomData};
use super::{cccs::CCCS, lcccs::LCCCS, nimfs::Proof};
use crate::folding::circuits::{
nonnative::affine::NonNativeAffineVar,
sum_check::{IOPProofVar, SumCheckVerifierGadget, VPAuxInfoVar},
utils::EqEvalGadget,
CF1,
};
use crate::utils::virtual_polynomial::VPAuxInfo;
use crate::{ccs::CCS, transcript::TranscriptVar};
/// Committed CCS instance
#[derive(Debug, Clone)]
pub struct CCCSVar<C: CurveGroup>
where
<C as CurveGroup>::BaseField: PrimeField,
{
// Commitment to witness
pub C: NonNativeAffineVar<C>,
// Public input/output
pub x: Vec<FpVar<CF1<C>>>,
}
impl<C> AllocVar<CCCS<C>, CF1<C>> for CCCSVar<C>
where
C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{
fn new_variable<T: Borrow<CCCS<C>>>(
cs: impl Into<Namespace<CF1<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let C = NonNativeAffineVar::<C>::new_variable(cs.clone(), || Ok(val.borrow().C), mode)?;
let x: Vec<FpVar<C::ScalarField>> =
Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
Ok(Self { C, x })
})
}
}
/// Linearized Committed CCS instance
#[derive(Debug, Clone)]
pub struct LCCCSVar<C: CurveGroup>
where
<C as CurveGroup>::BaseField: PrimeField,
{
// Commitment to witness
pub C: NonNativeAffineVar<C>,
// Relaxation factor of z for folded LCCCS
pub u: FpVar<CF1<C>>,
// Public input/output
pub x: Vec<FpVar<CF1<C>>>,
// Random evaluation point for the v_i
pub r_x: Vec<FpVar<CF1<C>>>,
// Vector of v_i
pub v: Vec<FpVar<CF1<C>>>,
}
impl<C> AllocVar<LCCCS<C>, CF1<C>> for LCCCSVar<C>
where
C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
{
fn new_variable<T: Borrow<LCCCS<C>>>(
cs: impl Into<Namespace<CF1<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let C = NonNativeAffineVar::<C>::new_variable(cs.clone(), || Ok(val.borrow().C), mode)?;
let u = FpVar::<C::ScalarField>::new_variable(cs.clone(), || Ok(val.borrow().u), mode)?;
let x: Vec<FpVar<C::ScalarField>> =
Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
let r_x: Vec<FpVar<C::ScalarField>> =
Vec::new_variable(cs.clone(), || Ok(val.borrow().r_x.clone()), mode)?;
let v: Vec<FpVar<C::ScalarField>> =
Vec::new_variable(cs.clone(), || Ok(val.borrow().v.clone()), mode)?;
Ok(Self { C, u, x, r_x, v })
})
}
}
/// ProofVar defines a multifolding proof
#[derive(Debug)]
pub struct ProofVar<C: CurveGroup> {
pub sc_proof: IOPProofVar<C>,
#[allow(clippy::type_complexity)]
pub sigmas_thetas: (Vec<Vec<FpVar<CF1<C>>>>, Vec<Vec<FpVar<CF1<C>>>>),
}
impl<C> AllocVar<Proof<C>, CF1<C>> for ProofVar<C>
where
C: CurveGroup,
<C as ark_ec::CurveGroup>::BaseField: PrimeField,
<C as Group>::ScalarField: Absorb,
{
fn new_variable<T: Borrow<Proof<C>>>(
cs: impl Into<Namespace<CF1<C>>>,
f: impl FnOnce() -> Result<T, SynthesisError>,
mode: AllocationMode,
) -> Result<Self, SynthesisError> {
f().and_then(|val| {
let cs = cs.into();
let sc_proof = IOPProofVar::<C>::new_variable(
cs.clone(),
|| Ok(val.borrow().sc_proof.clone()),
mode,
)?;
let sigmas: Vec<Vec<FpVar<CF1<C>>>> = val
.borrow()
.sigmas_thetas
.0
.iter()
.map(|sigmas_i| Vec::new_variable(cs.clone(), || Ok(sigmas_i.clone()), mode))
.collect::<Result<Vec<Vec<FpVar<CF1<C>>>>, SynthesisError>>()?;
let thetas: Vec<Vec<FpVar<CF1<C>>>> = val
.borrow()
.sigmas_thetas
.1
.iter()
.map(|thetas_i| Vec::new_variable(cs.clone(), || Ok(thetas_i.clone()), mode))
.collect::<Result<Vec<Vec<FpVar<CF1<C>>>>, SynthesisError>>()?;
Ok(Self {
sc_proof,
sigmas_thetas: (sigmas.clone(), thetas.clone()),
})
})
}
}
pub struct NIMFSGadget<C: CurveGroup> {
_c: PhantomData<C>,
}
impl<C: CurveGroup> NIMFSGadget<C>
where
<C as CurveGroup>::BaseField: PrimeField,
{
pub fn verify(
cs: ConstraintSystemRef<CF1<C>>,
// only used the CCS params, not the matrices
ccs: &CCS<C::ScalarField>,
mut transcript: impl TranscriptVar<C::ScalarField>,
running_instances: &[LCCCSVar<C>],
new_instances: &[CCCSVar<C>],
proof: ProofVar<C>,
) -> Result<LCCCSVar<C>, SynthesisError> {
// get the challenges
let gamma_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"gamma");
let gamma_scalar: FpVar<CF1<C>> =
FpVar::<CF1<C>>::new_constant(cs.clone(), gamma_scalar_raw)?;
transcript.absorb(gamma_scalar)?;
let gamma: FpVar<CF1<C>> = transcript.get_challenge()?;
let beta_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"beta");
let beta_scalar: FpVar<CF1<C>> =
FpVar::<CF1<C>>::new_constant(cs.clone(), beta_scalar_raw)?;
transcript.absorb(beta_scalar)?;
let beta: Vec<FpVar<CF1<C>>> = transcript.get_challenges(ccs.s)?;
let vp_aux_info_raw = VPAuxInfo::<C::ScalarField> {
max_degree: ccs.d + 1,
num_variables: ccs.s,
phantom: PhantomData::<C::ScalarField>,
};
let vp_aux_info = VPAuxInfoVar::<CF1<C>>::new_witness(cs.clone(), || Ok(vp_aux_info_raw))?;
// sumcheck
// first, compute the expected sumcheck sum: \sum gamma^j v_j
let mut sum_v_j_gamma = FpVar::<CF1<C>>::zero();
let mut gamma_j = FpVar::<C::ScalarField>::one();
for running_instance in running_instances.iter() {
for j in 0..running_instance.v.len() {
gamma_j *= gamma.clone();
sum_v_j_gamma += running_instance.v[j].clone() * gamma_j.clone();
}
}
// verify the interactive part of the sumcheck
let (e_vars, r_vars) =
SumCheckVerifierGadget::<C>::verify(&proof.sc_proof, &vp_aux_info, &mut transcript)?;
// extract the randomness from the sumcheck
let r_x_prime = r_vars.clone();
// verify the claim c
let computed_c = compute_c_gadget(
cs.clone(),
ccs,
proof.sigmas_thetas.0.clone(), // sigmas
proof.sigmas_thetas.1.clone(), // thetas
gamma,
beta,
running_instances
.iter()
.map(|lcccs| lcccs.r_x.clone())
.collect(),
r_x_prime.clone(),
)?;
computed_c.enforce_equal(&e_vars[e_vars.len() - 1])?;
// get the folding challenge
let rho_scalar_raw = C::ScalarField::from_le_bytes_mod_order(b"rho");
let rho_scalar: FpVar<CF1<C>> = FpVar::<CF1<C>>::new_constant(cs.clone(), rho_scalar_raw)?;
transcript.absorb(rho_scalar)?;
let rho: FpVar<CF1<C>> = transcript.get_challenge()?;
// return the folded instance
Self::fold(
running_instances,
new_instances,
proof.sigmas_thetas,
r_x_prime,
rho,
)
}
#[allow(clippy::type_complexity)]
fn fold(
lcccs: &[LCCCSVar<C>],
cccs: &[CCCSVar<C>],
sigmas_thetas: (Vec<Vec<FpVar<CF1<C>>>>, Vec<Vec<FpVar<CF1<C>>>>),
r_x_prime: Vec<FpVar<CF1<C>>>,
rho: FpVar<CF1<C>>,
) -> Result<LCCCSVar<C>, SynthesisError> {
let (sigmas, thetas) = (sigmas_thetas.0.clone(), sigmas_thetas.1.clone());
let mut u_folded: FpVar<CF1<C>> = FpVar::zero();
let mut x_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); lcccs[0].x.len()];
let mut v_folded: Vec<FpVar<CF1<C>>> = vec![FpVar::zero(); sigmas[0].len()];
let mut rho_i = FpVar::one();
for i in 0..(lcccs.len() + cccs.len()) {
let u: FpVar<CF1<C>>;
let x: Vec<FpVar<CF1<C>>>;
let v: Vec<FpVar<CF1<C>>>;
if i < lcccs.len() {
u = lcccs[i].u.clone();
x = lcccs[i].x.clone();
v = sigmas[i].clone();
} else {
u = FpVar::one();
x = cccs[i - lcccs.len()].x.clone();
v = thetas[i - lcccs.len()].clone();
}
u_folded += rho_i.clone() * u;
x_folded = x_folded
.iter()
.zip(
x.iter()
.map(|x_i| x_i * rho_i.clone())
.collect::<Vec<FpVar<CF1<C>>>>(),
)
.map(|(a_i, b_i)| a_i + b_i)
.collect();
v_folded = v_folded
.iter()
.zip(
v.iter()
.map(|x_i| x_i * rho_i.clone())
.collect::<Vec<FpVar<CF1<C>>>>(),
)
.map(|(a_i, b_i)| a_i + b_i)
.collect();
rho_i *= rho.clone();
}
Ok(LCCCSVar::<C> {
C: lcccs[0].C.clone(), // WIP this will come from the cyclefold circuit
u: u_folded,
x: x_folded,
r_x: r_x_prime,
v: v_folded,
})
}
}
/// computes c from the step 5 in section 5 of HyperNova, adapted to multiple LCCCS & CCCS
/// instances:
/// $$
/// c = \sum_{i \in [\mu]} \left(\sum_{j \in [t]} \gamma^{i \cdot t + j} \cdot e_i \cdot \sigma_{i,j} \right)
/// + \sum_{k \in [\nu]} \gamma^{\mu \cdot t+k} \cdot e_k \cdot \left( \sum_{i=1}^q c_i \cdot \prod_{j \in S_i}
/// \theta_{k,j} \right)
/// $$
#[allow(clippy::too_many_arguments)]
fn compute_c_gadget<F: PrimeField>(
cs: ConstraintSystemRef<F>,
ccs: &CCS<F>,
vec_sigmas: Vec<Vec<FpVar<F>>>,
vec_thetas: Vec<Vec<FpVar<F>>>,
gamma: FpVar<F>,
beta: Vec<FpVar<F>>,
vec_r_x: Vec<Vec<FpVar<F>>>,
vec_r_x_prime: Vec<FpVar<F>>,
) -> Result<FpVar<F>, SynthesisError> {
let mut e_lcccs = Vec::new();
for r_x in vec_r_x.iter() {
e_lcccs.push(EqEvalGadget::eq_eval(r_x, &vec_r_x_prime)?);
}
let mut c = FpVar::<F>::zero();
let mut current_gamma = FpVar::<F>::one();
for i in 0..vec_sigmas.len() {
for j in 0..ccs.t {
c += current_gamma.clone() * e_lcccs[i].clone() * vec_sigmas[i][j].clone();
current_gamma *= gamma.clone();
}
}
let ccs_c = Vec::<FpVar<F>>::new_constant(cs.clone(), ccs.c.clone())?;
let e_k = EqEvalGadget::eq_eval(&beta, &vec_r_x_prime)?;
#[allow(clippy::needless_range_loop)]
for k in 0..vec_thetas.len() {
let mut sum = FpVar::<F>::zero();
for i in 0..ccs.q {
let mut prod = FpVar::<F>::one();
for j in ccs.S[i].clone() {
prod *= vec_thetas[k][j].clone();
}
sum += ccs_c[i].clone() * prod;
}
c += current_gamma.clone() * e_k.clone() * sum;
current_gamma *= gamma.clone();
}
Ok(c)
}
#[cfg(test)]
mod tests {
use ark_pallas::{Fr, Projective};
use ark_r1cs_std::{alloc::AllocVar, fields::fp::FpVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
use ark_std::{test_rng, UniformRand};
use super::*;
use crate::{
ccs::{
tests::{get_test_ccs, get_test_z},
CCS,
},
commitment::{pedersen::Pedersen, CommitmentScheme},
folding::hypernova::{
nimfs::NIMFS,
utils::{compute_c, compute_sigmas_and_thetas},
},
transcript::{
poseidon::{poseidon_canonical_config, PoseidonTranscript, PoseidonTranscriptVar},
Transcript,
},
};
#[test]
pub fn test_compute_c_gadget() {
// number of LCCCS & CCCS instances to fold in a single step
let mu = 32;
let nu = 42;
let mut z_lcccs = Vec::new();
for i in 0..mu {
let z = get_test_z(i + 3);
z_lcccs.push(z);
}
let mut z_cccs = Vec::new();
for i in 0..nu {
let z = get_test_z(i + 3);
z_cccs.push(z);
}
let ccs: CCS<Fr> = get_test_ccs();
let mut rng = test_rng();
let gamma: Fr = Fr::rand(&mut rng);
let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
let r_x_prime: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
let (pedersen_params, _) =
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
// Create the LCCCS instances out of z_lcccs
let mut lcccs_instances = Vec::new();
for z_i in z_lcccs.iter() {
let (inst, _) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
lcccs_instances.push(inst);
}
// Create the CCCS instance out of z_cccs
let mut cccs_instances = Vec::new();
for z_i in z_cccs.iter() {
let (inst, _) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
cccs_instances.push(inst);
}
let sigmas_thetas = compute_sigmas_and_thetas(&ccs, &z_lcccs, &z_cccs, &r_x_prime);
let expected_c = compute_c(
&ccs,
&sigmas_thetas,
gamma,
&beta,
&lcccs_instances
.iter()
.map(|lcccs| lcccs.r_x.clone())
.collect(),
&r_x_prime,
);
let cs = ConstraintSystem::<Fr>::new_ref();
let mut vec_sigmas = Vec::new();
let mut vec_thetas = Vec::new();
for sigmas in sigmas_thetas.0 {
vec_sigmas
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(sigmas.clone())).unwrap());
}
for thetas in sigmas_thetas.1 {
vec_thetas
.push(Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(thetas.clone())).unwrap());
}
let vec_r_x: Vec<Vec<FpVar<Fr>>> = lcccs_instances
.iter()
.map(|lcccs| {
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(lcccs.r_x.clone())).unwrap()
})
.collect();
let vec_r_x_prime =
Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(r_x_prime.clone())).unwrap();
let gamma_var = FpVar::<Fr>::new_witness(cs.clone(), || Ok(gamma)).unwrap();
let beta_var = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(beta.clone())).unwrap();
let computed_c = compute_c_gadget(
cs.clone(),
&ccs,
vec_sigmas,
vec_thetas,
gamma_var,
beta_var,
vec_r_x,
vec_r_x_prime,
)
.unwrap();
assert_eq!(expected_c, computed_c.value().unwrap());
}
/// Test that generates mu>1 and nu>1 instances, and folds them in a single multifolding step,
/// to verify the folding in the NIMFSGadget circuit
#[test]
pub fn test_nimfs_gadget_verify() {
let mut rng = test_rng();
// Create a basic CCS circuit
let ccs = get_test_ccs::<Fr>();
let (pedersen_params, _) =
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
let mu = 32;
let nu = 42;
// Generate a mu LCCCS & nu CCCS satisfying witness
let mut z_lcccs = Vec::new();
for i in 0..mu {
let z = get_test_z(i + 3);
z_lcccs.push(z);
}
let mut z_cccs = Vec::new();
for i in 0..nu {
let z = get_test_z(nu + i + 3);
z_cccs.push(z);
}
// Create the LCCCS instances out of z_lcccs
let mut lcccs_instances = Vec::new();
let mut w_lcccs = Vec::new();
for z_i in z_lcccs.iter() {
let (running_instance, w) = ccs.to_lcccs(&mut rng, &pedersen_params, z_i).unwrap();
lcccs_instances.push(running_instance);
w_lcccs.push(w);
}
// Create the CCCS instance out of z_cccs
let mut cccs_instances = Vec::new();
let mut w_cccs = Vec::new();
for z_i in z_cccs.iter() {
let (new_instance, w) = ccs.to_cccs(&mut rng, &pedersen_params, z_i).unwrap();
cccs_instances.push(new_instance);
w_cccs.push(w);
}
// Prover's transcript
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript_p: PoseidonTranscript<Projective> =
PoseidonTranscript::<Projective>::new(&poseidon_config);
// Run the prover side of the multifolding
let (proof, folded_lcccs, folded_witness) =
NIMFS::<Projective, PoseidonTranscript<Projective>>::prove(
&mut transcript_p,
&ccs,
&lcccs_instances,
&cccs_instances,
&w_lcccs,
&w_cccs,
)
.unwrap();
// Verifier's transcript
let mut transcript_v: PoseidonTranscript<Projective> =
PoseidonTranscript::<Projective>::new(&poseidon_config);
// Run the verifier side of the multifolding
let folded_lcccs_v = NIMFS::<Projective, PoseidonTranscript<Projective>>::verify(
&mut transcript_v,
&ccs,
&lcccs_instances,
&cccs_instances,
proof.clone(),
)
.unwrap();
assert_eq!(folded_lcccs, folded_lcccs_v);
// Check that the folded LCCCS instance is a valid instance with respect to the folded witness
folded_lcccs
.check_relation(&pedersen_params, &ccs, &folded_witness)
.unwrap();
// allocate circuit inputs
let cs = ConstraintSystem::<Fr>::new_ref();
let lcccs_instancesVar =
Vec::<LCCCSVar<Projective>>::new_witness(cs.clone(), || Ok(lcccs_instances.clone()))
.unwrap();
let cccs_instancesVar =
Vec::<CCCSVar<Projective>>::new_witness(cs.clone(), || Ok(cccs_instances.clone()))
.unwrap();
let proofVar =
ProofVar::<Projective>::new_witness(cs.clone(), || Ok(proof.clone())).unwrap();
let transcriptVar = PoseidonTranscriptVar::<Fr>::new(cs.clone(), &poseidon_config);
let folded_lcccsVar = NIMFSGadget::<Projective>::verify(
cs.clone(),
&ccs,
transcriptVar,
&lcccs_instancesVar,
&cccs_instancesVar,
proofVar,
)
.unwrap();
assert!(cs.is_satisfied().unwrap());
assert_eq!(folded_lcccsVar.u.value().unwrap(), folded_lcccs.u);
}
}