You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

787 lines
27 KiB

/// Implements the scheme described in [Nova](https://eprint.iacr.org/2021/370.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf).
use ark_crypto_primitives::{
crh::{poseidon::CRH, CRHScheme},
sponge::{poseidon::PoseidonConfig, Absorb},
};
use ark_ec::{AffineRepr, CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar};
use ark_std::fmt::Debug;
use ark_std::{One, Zero};
use core::marker::PhantomData;
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystem};
use crate::ccs::r1cs::{extract_r1cs, extract_w_x, R1CS};
use crate::commitment::CommitmentProver;
use crate::folding::circuits::nonnative::point_to_nonnative_limbs;
use crate::frontend::FCircuit;
use crate::utils::vec::is_zero_vec;
use crate::Error;
use crate::FoldingScheme;
pub mod circuits;
pub mod cyclefold;
pub mod decider_eth;
pub mod decider_eth_circuit;
pub mod nifs;
pub mod traits;
use circuits::{AugmentedFCircuit, ChallengeGadget, CF2};
use cyclefold::{CycleFoldChallengeGadget, CycleFoldCircuit};
use nifs::NIFS;
use traits::NovaR1CS;
#[cfg(test)]
use cyclefold::CF_IO_LEN;
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CommittedInstance<C: CurveGroup> {
pub cmE: C,
pub u: C::ScalarField,
pub cmW: C,
pub x: Vec<C::ScalarField>,
}
impl<C: CurveGroup> CommittedInstance<C> {
pub fn dummy(io_len: usize) -> Self {
Self {
cmE: C::zero(),
u: C::ScalarField::zero(),
cmW: C::zero(),
x: vec![C::ScalarField::zero(); io_len],
}
}
}
impl<C: CurveGroup> CommittedInstance<C>
where
<C as Group>::ScalarField: Absorb,
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
/// hash implements the committed instance hash compatible with the gadget implemented in
/// nova/circuits.rs::CommittedInstanceVar.hash.
/// Returns `H(i, z_0, z_i, U_i)`, where `i` can be `i` but also `i+1`, and `U_i` is the
/// `CommittedInstance`.
pub fn hash(
&self,
poseidon_config: &PoseidonConfig<C::ScalarField>,
i: C::ScalarField,
z_0: Vec<C::ScalarField>,
z_i: Vec<C::ScalarField>,
) -> Result<C::ScalarField, Error> {
let (cmE_x, cmE_y) = point_to_nonnative_limbs::<C>(self.cmE)?;
let (cmW_x, cmW_y) = point_to_nonnative_limbs::<C>(self.cmW)?;
CRH::<C::ScalarField>::evaluate(
poseidon_config,
vec![
vec![i],
z_0,
z_i,
vec![self.u],
self.x.clone(),
cmE_x,
cmE_y,
cmW_x,
cmW_y,
]
.concat(),
)
.map_err(|e| Error::Other(e.to_string()))
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Witness<C: CurveGroup> {
pub E: Vec<C::ScalarField>,
pub rE: C::ScalarField,
pub W: Vec<C::ScalarField>,
pub rW: C::ScalarField,
}
impl<C: CurveGroup> Witness<C>
where
<C as Group>::ScalarField: Absorb,
{
pub fn new(w: Vec<C::ScalarField>, e_len: usize) -> Self {
// note: at the current version, we don't use the blinding factors and we set them to 0
// always.
Self {
E: vec![C::ScalarField::zero(); e_len],
rE: C::ScalarField::zero(),
W: w,
rW: C::ScalarField::zero(),
}
}
pub fn commit<CP: CommitmentProver<C>>(
&self,
params: &CP::Params,
x: Vec<C::ScalarField>,
) -> Result<CommittedInstance<C>, Error> {
let mut cmE = C::zero();
if !is_zero_vec::<C::ScalarField>(&self.E) {
cmE = CP::commit(params, &self.E, &self.rE)?;
}
let cmW = CP::commit(params, &self.W, &self.rW)?;
Ok(CommittedInstance {
cmE,
u: C::ScalarField::one(),
cmW,
x,
})
}
}
#[derive(Debug, Clone)]
pub struct ProverParams<C1, C2, CP1, CP2>
where
C1: CurveGroup,
C2: CurveGroup,
CP1: CommitmentProver<C1>,
CP2: CommitmentProver<C2>,
{
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub cm_params: CP1::Params,
pub cf_cm_params: CP2::Params,
}
#[derive(Debug, Clone)]
pub struct VerifierParams<C1: CurveGroup, C2: CurveGroup> {
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub r1cs: R1CS<C1::ScalarField>,
pub cf_r1cs: R1CS<C2::ScalarField>,
}
/// Implements Nova+CycleFold's IVC, described in [Nova](https://eprint.iacr.org/2021/370.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait
#[derive(Clone, Debug)]
pub struct Nova<C1, GC1, C2, GC2, FC, CP1, CP2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CP1: CommitmentProver<C1>,
CP2: CommitmentProver<C2>,
{
_gc1: PhantomData<GC1>,
_c2: PhantomData<C2>,
_gc2: PhantomData<GC2>,
/// R1CS of the Augmented Function circuit
pub r1cs: R1CS<C1::ScalarField>,
/// R1CS of the CycleFold circuit
pub cf_r1cs: R1CS<C2::ScalarField>,
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
/// CommitmentProver::Params over C1
pub cm_params: CP1::Params,
/// CycleFold CommitmentProver::Params, over C2
pub cf_cm_params: CP2::Params,
/// F circuit, the circuit that is being folded
pub F: FC,
pub i: C1::ScalarField,
/// initial state
pub z_0: Vec<C1::ScalarField>,
/// current i-th state
pub z_i: Vec<C1::ScalarField>,
/// Nova instances
pub w_i: Witness<C1>,
pub u_i: CommittedInstance<C1>,
pub W_i: Witness<C1>,
pub U_i: CommittedInstance<C1>,
/// CycleFold running instance
pub cf_W_i: Witness<C2>,
pub cf_U_i: CommittedInstance<C2>,
}
impl<C1, GC1, C2, GC2, FC, CP1, CP2> FoldingScheme<C1, C2, FC>
for Nova<C1, GC1, C2, GC2, FC, CP1, CP2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CP1: CommitmentProver<C1>,
CP2: CommitmentProver<C2>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
type PreprocessorParam = (Self::ProverParam, FC);
type ProverParam = ProverParams<C1, C2, CP1, CP2>;
type VerifierParam = VerifierParams<C1, C2>;
type CommittedInstanceWithWitness = (CommittedInstance<C1>, Witness<C1>);
type CFCommittedInstanceWithWitness = (CommittedInstance<C2>, Witness<C2>);
fn preprocess(
prep_param: &Self::PreprocessorParam,
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
let (prover_params, F_circuit) = prep_param;
let (r1cs, cf_r1cs) =
get_r1cs::<C1, GC1, C2, GC2, FC>(&prover_params.poseidon_config, *F_circuit)?;
let verifier_params = VerifierParams::<C1, C2> {
poseidon_config: prover_params.poseidon_config.clone(),
r1cs,
cf_r1cs,
};
Ok((prover_params.clone(), verifier_params))
}
/// Initializes the Nova+CycleFold's IVC for the given parameters and initial state `z_0`.
fn init(pp: &Self::ProverParam, F: FC, z_0: Vec<C1::ScalarField>) -> Result<Self, Error> {
// prepare the circuit to obtain its R1CS
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(&pp.poseidon_config, F);
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
augmented_F_circuit.generate_constraints(cs.clone())?;
cs.finalize();
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let r1cs = extract_r1cs::<C1::ScalarField>(&cs);
cf_circuit.generate_constraints(cs2.clone())?;
cs2.finalize();
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let cf_r1cs = extract_r1cs::<C1::BaseField>(&cs2);
// setup the dummy instances
let (w_dummy, u_dummy) = r1cs.dummy_instance();
let (cf_w_dummy, cf_u_dummy) = cf_r1cs.dummy_instance();
// W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the
// R1CS that we're working with.
Ok(Self {
_gc1: PhantomData,
_c2: PhantomData,
_gc2: PhantomData,
r1cs,
cf_r1cs,
poseidon_config: pp.poseidon_config.clone(),
cm_params: pp.cm_params.clone(),
cf_cm_params: pp.cf_cm_params.clone(),
F,
i: C1::ScalarField::zero(),
z_0: z_0.clone(),
z_i: z_0,
w_i: w_dummy.clone(),
u_i: u_dummy.clone(),
W_i: w_dummy,
U_i: u_dummy,
// cyclefold running instance
cf_W_i: cf_w_dummy.clone(),
cf_U_i: cf_u_dummy.clone(),
})
}
/// Implements IVC.P of Nova+CycleFold
fn prove_step(&mut self) -> Result<(), Error> {
let augmented_F_circuit: AugmentedFCircuit<C1, C2, GC2, FC>;
let cfW_circuit: CycleFoldCircuit<C1, GC1>;
let cfE_circuit: CycleFoldCircuit<C1, GC1>;
let z_i1 = self.F.step_native(self.z_i.clone())?;
// compute T and cmT for AugmentedFCircuit
let (T, cmT) = self.compute_cmT()?;
// r_bits is the r used to the RLC of the F' instances
let r_bits = ChallengeGadget::<C1>::get_challenge_native(
&self.poseidon_config,
self.U_i.clone(),
self.u_i.clone(),
cmT,
)?;
let r_Fr = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
// fold Nova instances
let (W_i1, U_i1): (Witness<C1>, CommittedInstance<C1>) = NIFS::<C1, CP1>::fold_instances(
r_Fr, &self.W_i, &self.U_i, &self.w_i, &self.u_i, &T, cmT,
)?;
// folded instance output (public input, x)
// u_{i+1}.x = H(i+1, z_0, z_{i+1}, U_{i+1})
let u_i1_x = U_i1.hash(
&self.poseidon_config,
self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
)?;
if self.i == C1::ScalarField::zero() {
// base case
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
i: Some(C1::ScalarField::zero()), // = i=0
z_0: Some(self.z_0.clone()), // = z_i
z_i: Some(self.z_i.clone()),
u_i: Some(self.u_i.clone()), // = dummy
U_i: Some(self.U_i.clone()), // = dummy
U_i1: Some(U_i1.clone()),
cmT: Some(cmT),
F: self.F,
x: Some(u_i1_x),
cf1_u_i: None,
cf2_u_i: None,
cf_U_i: None,
cf1_U_i1: None,
cf_U_i1: None,
cf1_cmT: None,
cf2_cmT: None,
cf1_r_nonnat: None,
cf2_r_nonnat: None,
};
#[cfg(test)]
NIFS::<C1, CP1>::verify_folded_instance(r_Fr, &self.U_i, &self.u_i, &U_i1, &cmT)?;
} else {
// CycleFold part:
// get the vector used as public inputs 'x' in the CycleFold circuit
// cyclefold circuit for cmW
let cfW_u_i_x = [
get_cm_coordinates(&self.U_i.cmW),
get_cm_coordinates(&self.u_i.cmW),
get_cm_coordinates(&U_i1.cmW),
]
.concat();
// cyclefold circuit for cmE
let cfE_u_i_x = [
get_cm_coordinates(&self.U_i.cmE),
get_cm_coordinates(&self.u_i.cmE),
get_cm_coordinates(&U_i1.cmE),
]
.concat();
cfW_circuit = CycleFoldCircuit::<C1, GC1> {
_gc: PhantomData,
r_bits: Some(r_bits.clone()),
p1: Some(self.U_i.clone().cmW),
p2: Some(self.u_i.clone().cmW),
p3: Some(U_i1.clone().cmW),
x: Some(cfW_u_i_x.clone()),
};
cfE_circuit = CycleFoldCircuit::<C1, GC1> {
_gc: PhantomData,
r_bits: Some(r_bits.clone()),
p1: Some(self.U_i.clone().cmE),
p2: Some(cmT),
p3: Some(U_i1.clone().cmE),
x: Some(cfE_u_i_x.clone()),
};
// fold self.cf_U_i + cfW_U -> folded running with cfW
let (_cfW_w_i, cfW_u_i, cfW_W_i1, cfW_U_i1, cfW_cmT, cfW_r1_Fq) = self
.fold_cyclefold_circuit(
self.cf_W_i.clone(), // CycleFold running instance witness
self.cf_U_i.clone(), // CycleFold running instance
cfW_u_i_x,
cfW_circuit,
)?;
// fold [the output from folding self.cf_U_i + cfW_U] + cfE_U = folded_running_with_cfW + cfE
let (_cfE_w_i, cfE_u_i, cf_W_i1, cf_U_i1, cf_cmT, cf_r2_Fq) =
self.fold_cyclefold_circuit(cfW_W_i1, cfW_U_i1.clone(), cfE_u_i_x, cfE_circuit)?;
augmented_F_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
i: Some(self.i),
z_0: Some(self.z_0.clone()),
z_i: Some(self.z_i.clone()),
u_i: Some(self.u_i.clone()),
U_i: Some(self.U_i.clone()),
U_i1: Some(U_i1.clone()),
cmT: Some(cmT),
F: self.F,
x: Some(u_i1_x),
// cyclefold values
cf1_u_i: Some(cfW_u_i.clone()),
cf2_u_i: Some(cfE_u_i.clone()),
cf_U_i: Some(self.cf_U_i.clone()),
cf1_U_i1: Some(cfW_U_i1.clone()),
cf_U_i1: Some(cf_U_i1.clone()),
cf1_cmT: Some(cfW_cmT),
cf2_cmT: Some(cf_cmT),
cf1_r_nonnat: Some(cfW_r1_Fq),
cf2_r_nonnat: Some(cf_r2_Fq),
};
self.cf_W_i = cf_W_i1.clone();
self.cf_U_i = cf_U_i1.clone();
#[cfg(test)]
{
self.cf_r1cs.check_instance_relation(&_cfW_w_i, &cfW_u_i)?;
self.cf_r1cs.check_instance_relation(&_cfE_w_i, &cfE_u_i)?;
self.cf_r1cs
.check_relaxed_instance_relation(&self.cf_W_i, &self.cf_U_i)?;
}
}
let cs = ConstraintSystem::<C1::ScalarField>::new_ref();
augmented_F_circuit.generate_constraints(cs.clone())?;
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let (w_i1, x_i1) = extract_w_x::<C1::ScalarField>(&cs);
if x_i1[0] != u_i1_x {
return Err(Error::NotEqual);
}
#[cfg(test)]
if x_i1.len() != 1 {
return Err(Error::NotExpectedLength(x_i1.len(), 1));
}
// set values for next iteration
self.i += C1::ScalarField::one();
self.z_i = z_i1.clone();
self.w_i = Witness::<C1>::new(w_i1, self.r1cs.A.n_rows);
self.u_i = self.w_i.commit::<CP1>(&self.cm_params, vec![u_i1_x])?;
self.W_i = W_i1.clone();
self.U_i = U_i1.clone();
#[cfg(test)]
{
self.r1cs.check_instance_relation(&self.w_i, &self.u_i)?;
self.r1cs
.check_relaxed_instance_relation(&self.W_i, &self.U_i)?;
}
Ok(())
}
fn state(&self) -> Vec<C1::ScalarField> {
self.z_i.clone()
}
fn instances(
&self,
) -> (
Self::CommittedInstanceWithWitness,
Self::CommittedInstanceWithWitness,
Self::CFCommittedInstanceWithWitness,
) {
(
(self.U_i.clone(), self.W_i.clone()),
(self.u_i.clone(), self.w_i.clone()),
(self.cf_U_i.clone(), self.cf_W_i.clone()),
)
}
/// Implements IVC.V of Nova+CycleFold
fn verify(
vp: Self::VerifierParam,
z_0: Vec<C1::ScalarField>, // initial state
z_i: Vec<C1::ScalarField>, // last state
num_steps: C1::ScalarField,
running_instance: Self::CommittedInstanceWithWitness,
incoming_instance: Self::CommittedInstanceWithWitness,
cyclefold_instance: Self::CFCommittedInstanceWithWitness,
) -> Result<(), Error> {
let (U_i, W_i) = running_instance;
let (u_i, w_i) = incoming_instance;
let (cf_U_i, cf_W_i) = cyclefold_instance;
if u_i.x.len() != 1 || U_i.x.len() != 1 {
return Err(Error::IVCVerificationFail);
}
// check that u_i's output points to the running instance
// u_i.X == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&vp.poseidon_config, num_steps, z_0, z_i.clone())?;
if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail);
}
// check u_i.cmE==0, u_i.u==1 (=u_i is a un-relaxed instance)
if !u_i.cmE.is_zero() || !u_i.u.is_one() {
return Err(Error::IVCVerificationFail);
}
// check R1CS satisfiability
vp.r1cs.check_instance_relation(&w_i, &u_i)?;
// check RelaxedR1CS satisfiability
vp.r1cs.check_relaxed_instance_relation(&W_i, &U_i)?;
// check CycleFold RelaxedR1CS satisfiability
vp.cf_r1cs
.check_relaxed_instance_relation(&cf_W_i, &cf_U_i)?;
Ok(())
}
}
impl<C1, GC1, C2, GC2, FC, CP1, CP2> Nova<C1, GC1, C2, GC2, FC, CP1, CP2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CP1: CommitmentProver<C1>,
CP2: CommitmentProver<C2>,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
{
// computes T and cmT for the AugmentedFCircuit
fn compute_cmT(&self) -> Result<(Vec<C1::ScalarField>, C1), Error> {
NIFS::<C1, CP1>::compute_cmT(
&self.cm_params,
&self.r1cs,
&self.w_i,
&self.u_i,
&self.W_i,
&self.U_i,
)
}
// computes T* and cmT* for the CycleFoldCircuit
fn compute_cf_cmT(
&self,
cf_w_i: &Witness<C2>,
cf_u_i: &CommittedInstance<C2>,
cf_W_i: &Witness<C2>,
cf_U_i: &CommittedInstance<C2>,
) -> Result<(Vec<C2::ScalarField>, C2), Error> {
NIFS::<C2, CP2>::compute_cyclefold_cmT(
&self.cf_cm_params,
&self.cf_r1cs,
cf_w_i,
cf_u_i,
cf_W_i,
cf_U_i,
)
}
}
impl<C1, GC1, C2, GC2, FC, CP1, CP2> Nova<C1, GC1, C2, GC2, FC, CP1, CP2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CP1: CommitmentProver<C1>,
CP2: CommitmentProver<C2>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
// folds the given cyclefold circuit and its instances
#[allow(clippy::type_complexity)]
fn fold_cyclefold_circuit(
&self,
cf_W_i: Witness<C2>, // witness of the running instance
cf_U_i: CommittedInstance<C2>, // running instance
cf_u_i_x: Vec<C2::ScalarField>,
cf_circuit: CycleFoldCircuit<C1, GC1>,
) -> Result<
(
Witness<C2>,
CommittedInstance<C2>, // u_i
Witness<C2>, // W_i1
CommittedInstance<C2>, // U_i1
C2, // cmT
C2::ScalarField, // r_Fq
),
Error,
> {
let cs2 = ConstraintSystem::<C1::BaseField>::new_ref();
cf_circuit.generate_constraints(cs2.clone())?;
let cs2 = cs2.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let (cf_w_i, cf_x_i) = extract_w_x::<C1::BaseField>(&cs2);
if cf_x_i != cf_u_i_x {
return Err(Error::NotEqual);
}
#[cfg(test)]
if cf_x_i.len() != CF_IO_LEN {
return Err(Error::NotExpectedLength(cf_x_i.len(), CF_IO_LEN));
}
// fold cyclefold instances
let cf_w_i = Witness::<C2>::new(cf_w_i.clone(), self.cf_r1cs.A.n_rows);
let cf_u_i: CommittedInstance<C2> =
cf_w_i.commit::<CP2>(&self.cf_cm_params, cf_x_i.clone())?;
// compute T* and cmT* for CycleFoldCircuit
let (cf_T, cf_cmT) = self.compute_cf_cmT(&cf_w_i, &cf_u_i, &cf_W_i, &cf_U_i)?;
let cf_r_bits = CycleFoldChallengeGadget::<C2, GC2>::get_challenge_native(
&self.poseidon_config,
cf_U_i.clone(),
cf_u_i.clone(),
cf_cmT,
)?;
let cf_r_Fq = C1::BaseField::from_bigint(BigInteger::from_bits_le(&cf_r_bits))
.ok_or(Error::OutOfBounds)?;
let (cf_W_i1, cf_U_i1) = NIFS::<C2, CP2>::fold_instances(
cf_r_Fq, &cf_W_i, &cf_U_i, &cf_w_i, &cf_u_i, &cf_T, cf_cmT,
)?;
Ok((cf_w_i, cf_u_i, cf_W_i1, cf_U_i1, cf_cmT, cf_r_Fq))
}
}
/// helper method to get the r1cs from the ConstraintSynthesizer
pub fn get_r1cs_from_cs<F: PrimeField>(
circuit: impl ConstraintSynthesizer<F>,
) -> Result<R1CS<F>, Error> {
let cs = ConstraintSystem::<F>::new_ref();
circuit.generate_constraints(cs.clone())?;
cs.finalize();
let cs = cs.into_inner().ok_or(Error::NoInnerConstraintSystem)?;
let r1cs = extract_r1cs::<F>(&cs);
Ok(r1cs)
}
/// helper method to get the R1CS for both the AugmentedFCircuit and the CycleFold circuit
#[allow(clippy::type_complexity)]
pub fn get_r1cs<C1, GC1, C2, GC2, FC>(
poseidon_config: &PoseidonConfig<C1::ScalarField>,
F_circuit: FC,
) -> Result<(R1CS<C1::ScalarField>, R1CS<C2::ScalarField>), Error>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
let augmented_F_circuit =
AugmentedFCircuit::<C1, C2, GC2, FC>::empty(poseidon_config, F_circuit);
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
let r1cs = get_r1cs_from_cs::<C1::ScalarField>(augmented_F_circuit)?;
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
Ok((r1cs, cf_r1cs))
}
/// helper method to get the pedersen params length for both the AugmentedFCircuit and the
/// CycleFold circuit
pub fn get_pedersen_params_len<C1, GC1, C2, GC2, FC>(
poseidon_config: &PoseidonConfig<C1::ScalarField>,
F_circuit: FC,
) -> Result<(usize, usize), Error>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
let (r1cs, cf_r1cs) = get_r1cs::<C1, GC1, C2, GC2, FC>(poseidon_config, F_circuit)?;
Ok((r1cs.A.n_rows, cf_r1cs.A.n_rows))
}
pub(crate) fn get_cm_coordinates<C: CurveGroup>(cm: &C) -> Vec<C::BaseField> {
let zero = (&C::BaseField::zero(), &C::BaseField::one());
let cm = cm.into_affine();
let (cm_x, cm_y) = cm.xy().unwrap_or(zero);
vec![*cm_x, *cm_y]
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_pallas::{constraints::GVar, Fr, Projective};
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
use crate::commitment::pedersen::Pedersen;
use crate::frontend::tests::CubicFCircuit;
use crate::transcript::poseidon::poseidon_test_config;
/// This test tests the Nova+CycleFold IVC, and by consequence it is also testing the
/// AugmentedFCircuit
#[test]
fn test_ivc() {
type NOVA = Nova<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
Pedersen<Projective>,
Pedersen<Projective2>,
>;
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_test_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(());
let z_0 = vec![Fr::from(3_u32)];
let (cm_len, cf_cm_len) =
get_pedersen_params_len::<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>>(
&poseidon_config,
F_circuit,
)
.unwrap();
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, cm_len);
let cf_pedersen_params = Pedersen::<Projective2>::new_params(&mut rng, cf_cm_len);
let prover_params =
ProverParams::<Projective, Projective2, Pedersen<Projective>, Pedersen<Projective2>> {
poseidon_config: poseidon_config.clone(),
cm_params: pedersen_params,
cf_cm_params: cf_pedersen_params,
};
let mut nova = NOVA::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let num_steps: usize = 3;
for _ in 0..num_steps {
nova.prove_step().unwrap();
}
assert_eq!(Fr::from(num_steps as u32), nova.i);
let verifier_params = VerifierParams::<Projective, Projective2> {
poseidon_config,
r1cs: nova.clone().r1cs,
cf_r1cs: nova.clone().cf_r1cs,
};
let (running_instance, incoming_instance, cyclefold_instance) = nova.instances();
NOVA::verify(
verifier_params,
z_0,
nova.z_i,
nova.i,
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}
}