You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

503 lines
18 KiB

/// This file implements the offchain decider. For ethereum use cases, use the
/// DeciderEth from decider_eth.rs file.
/// More details can be found at the documentation page:
/// https://privacy-scaling-explorations.github.io/sonobe-docs/design/nova-decider-offchain.html
use ark_crypto_primitives::sponge::{poseidon::PoseidonSponge, Absorb, CryptographicSponge};
use ark_ec::{AffineRepr, CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_snark::SNARK;
use ark_std::rand::{CryptoRng, RngCore};
use ark_std::{One, Zero};
use core::marker::PhantomData;
use super::decider_circuits::{DeciderCircuit1, DeciderCircuit2};
use super::{
nifs::{nova::NIFS, NIFSTrait},
CommittedInstance, Nova,
};
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::{
cyclefold::CycleFoldCommittedInstance,
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
CF2,
};
use crate::frontend::FCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
use crate::Error;
use crate::{Decider as DeciderTrait, FoldingScheme};
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Proof<C1, C2, CS1, CS2, S1, S2>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
S1: SNARK<C1::ScalarField>,
S2: SNARK<C2::ScalarField>,
{
c1_snark_proof: S1::Proof,
c2_snark_proof: S2::Proof,
cs1_proofs: [CS1::Proof; 2],
cs2_proofs: [CS2::Proof; 2],
// cmT and r are values for the last fold, U_{i+1}=NIFS.V(r, U_i, u_i, cmT), and they are
// checked in-circuit
cmT: C1,
// cyclefold committed instance
cf_U_i: CycleFoldCommittedInstance<C2>,
// the CS challenges are provided by the prover, but in-circuit they are checked to match the
// in-circuit computed computed ones.
cs1_challenges: [C1::ScalarField; 2],
cs2_challenges: [C2::ScalarField; 2],
}
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct ProverParam<CS1_ProvingKey, S1_ProvingKey, CS2_ProvingKey, S2_ProvingKey>
where
CS1_ProvingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
S1_ProvingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
CS2_ProvingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
S2_ProvingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
{
pub c1_snark_pp: S1_ProvingKey,
pub c1_cs_pp: CS1_ProvingKey,
pub c2_snark_pp: S2_ProvingKey,
pub c2_cs_pp: CS2_ProvingKey,
}
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize)]
pub struct VerifierParam<C1, CS1_VerifyingKey, S1_VerifyingKey, CS2_VerifyingKey, S2_VerifyingKey>
where
C1: CurveGroup,
CS1_VerifyingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
S1_VerifyingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
CS2_VerifyingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
S2_VerifyingKey: Clone + CanonicalSerialize + CanonicalDeserialize,
{
pub pp_hash: C1::ScalarField,
pub c1_snark_vp: S1_VerifyingKey,
pub c1_cs_vp: CS1_VerifyingKey,
pub c2_snark_vp: S2_VerifyingKey,
pub c2_cs_vp: CS2_VerifyingKey,
}
/// Onchain Decider, for ethereum use cases
#[derive(Clone, Debug)]
pub struct Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S1, S2, FS> {
_c1: PhantomData<C1>,
_gc1: PhantomData<GC1>,
_c2: PhantomData<C2>,
_gc2: PhantomData<GC2>,
_fc: PhantomData<FC>,
_cs1: PhantomData<CS1>,
_cs2: PhantomData<CS2>,
_s1: PhantomData<S1>,
_s2: PhantomData<S2>,
_fs: PhantomData<FS>,
}
impl<C1, GC1, C2, GC2, FC, CS1, CS2, S1, S2, FS> DeciderTrait<C1, C2, FC, FS>
for Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S1, S2, FS>
where
C1: CurveGroup,
C2: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<
C1,
ProverChallenge = C1::ScalarField,
Challenge = C1::ScalarField,
Proof = crate::commitment::kzg::Proof<C1>,
>,
CS2: CommitmentScheme<
C2,
ProverChallenge = C2::ScalarField,
Challenge = C2::ScalarField,
Proof = crate::commitment::kzg::Proof<C2>,
>,
S1: SNARK<C1::ScalarField>,
S2: SNARK<C2::ScalarField>,
FS: FoldingScheme<C1, C2, FC>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'b> &'b GC1: GroupOpsBounds<'b, C1, GC1>,
for<'b> &'b GC2: GroupOpsBounds<'b, C2, GC2>,
// constrain FS into Nova, since this is a Decider specifically for Nova
Nova<C1, GC1, C2, GC2, FC, CS1, CS2, false>: From<FS>,
crate::folding::nova::ProverParams<C1, C2, CS1, CS2, false>:
From<<FS as FoldingScheme<C1, C2, FC>>::ProverParam>,
crate::folding::nova::VerifierParams<C1, C2, CS1, CS2, false>:
From<<FS as FoldingScheme<C1, C2, FC>>::VerifierParam>,
{
type PreprocessorParam = (FS::ProverParam, FS::VerifierParam);
type ProverParam =
ProverParam<CS1::ProverParams, S1::ProvingKey, CS2::ProverParams, S2::ProvingKey>;
type Proof = Proof<C1, C2, CS1, CS2, S1, S2>;
type VerifierParam = VerifierParam<
C1,
CS1::VerifierParams,
S1::VerifyingKey,
CS2::VerifierParams,
S2::VerifyingKey,
>;
type PublicInput = Vec<C1::ScalarField>;
type CommittedInstance = CommittedInstance<C1>;
fn preprocess(
mut rng: impl RngCore + CryptoRng,
prep_param: Self::PreprocessorParam,
fs: FS,
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
let circuit1 = DeciderCircuit1::<C1, C2, GC2>::from_nova::<GC1, CS1, CS2, false, FC>(
fs.clone().into(),
)?;
let circuit2 =
DeciderCircuit2::<C1, GC1, C2>::from_nova::<GC2, CS1, CS2, false, FC>(fs.into())?;
// get the Groth16 specific setup for the circuits
let (c1_g16_pk, c1_g16_vk) = S1::circuit_specific_setup(circuit1, &mut rng).unwrap();
let (c2_g16_pk, c2_g16_vk) = S2::circuit_specific_setup(circuit2, &mut rng).unwrap();
// get the FoldingScheme prover & verifier params from Nova
#[allow(clippy::type_complexity)]
let nova_pp: <Nova<C1, GC1, C2, GC2, FC, CS1, CS2, false> as FoldingScheme<
C1,
C2,
FC,
>>::ProverParam = prep_param.0.clone().into();
#[allow(clippy::type_complexity)]
let nova_vp: <Nova<C1, GC1, C2, GC2, FC, CS1, CS2, false> as FoldingScheme<
C1,
C2,
FC,
>>::VerifierParam = prep_param.1.clone().into();
let pp_hash = nova_vp.pp_hash()?;
let pp = Self::ProverParam {
c1_snark_pp: c1_g16_pk,
c1_cs_pp: nova_pp.cs_pp,
c2_snark_pp: c2_g16_pk,
c2_cs_pp: nova_pp.cf_cs_pp,
};
let vp = Self::VerifierParam {
pp_hash,
c1_snark_vp: c1_g16_vk,
c1_cs_vp: nova_vp.cs_vp,
c2_snark_vp: c2_g16_vk,
c2_cs_vp: nova_vp.cf_cs_vp,
};
Ok((pp, vp))
}
fn prove(
mut rng: impl RngCore + CryptoRng,
pp: Self::ProverParam,
fs: FS,
) -> Result<Self::Proof, Error> {
let circuit1 = DeciderCircuit1::<C1, C2, GC2>::from_nova::<GC1, CS1, CS2, false, FC>(
fs.clone().into(),
)?;
let circuit2 =
DeciderCircuit2::<C1, GC1, C2>::from_nova::<GC2, CS1, CS2, false, FC>(fs.into())?;
let c1_snark_proof = S1::prove(&pp.c1_snark_pp, circuit1.clone(), &mut rng)
.map_err(|e| Error::Other(e.to_string()))?;
let c2_snark_proof = S2::prove(&pp.c2_snark_pp, circuit2.clone(), &mut rng)
.map_err(|e| Error::Other(e.to_string()))?;
let cmT = circuit1.cmT.unwrap();
let W_i1 = circuit1.W_i1.unwrap();
let cf_W_i = circuit2.cf_W_i.unwrap();
// get the challenges that have been already computed when preparing the circuits inputs in
// the above `from_nova` calls
let challenge_W = circuit1
.cs_c_W
.ok_or(Error::MissingValue("cs_c_W".to_string()))?;
let challenge_E = circuit1
.cs_c_E
.ok_or(Error::MissingValue("cs_c_E".to_string()))?;
let c2_challenge_W = circuit2
.cs_c_W
.ok_or(Error::MissingValue("c2's cs_c_W".to_string()))?;
let c2_challenge_E = circuit2
.cs_c_E
.ok_or(Error::MissingValue("c2's cs_c_E".to_string()))?;
// generate CommitmentScheme proofs for the main instance
let U_cmW_proof = CS1::prove_with_challenge(
&pp.c1_cs_pp,
challenge_W,
&W_i1.W,
&C1::ScalarField::zero(),
None,
)?;
let U_cmE_proof = CS1::prove_with_challenge(
&pp.c1_cs_pp,
challenge_E,
&W_i1.E,
&C1::ScalarField::zero(),
None,
)?;
// CS proofs for the CycleFold instance
let cf_cmW_proof = CS2::prove_with_challenge(
&pp.c2_cs_pp,
c2_challenge_W,
&cf_W_i.W,
&C2::ScalarField::zero(),
None,
)?;
let cf_cmE_proof = CS2::prove_with_challenge(
&pp.c2_cs_pp,
c2_challenge_E,
&cf_W_i.E,
&C2::ScalarField::zero(),
None,
)?;
Ok(Self::Proof {
c1_snark_proof,
c2_snark_proof,
cs1_proofs: [U_cmW_proof, U_cmE_proof],
cs2_proofs: [cf_cmW_proof, cf_cmE_proof],
cmT,
cf_U_i: circuit1.cf_U_i.unwrap(),
cs1_challenges: [challenge_W, challenge_E],
cs2_challenges: [c2_challenge_W, c2_challenge_E],
})
}
fn verify(
vp: Self::VerifierParam,
i: C1::ScalarField,
z_0: Vec<C1::ScalarField>,
z_i: Vec<C1::ScalarField>,
running_instance: &Self::CommittedInstance,
incoming_instance: &Self::CommittedInstance,
proof: &Self::Proof,
) -> Result<bool, Error> {
if i <= C1::ScalarField::one() {
return Err(Error::NotEnoughSteps);
}
// compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT)
let poseidon_config = poseidon_canonical_config::<C1::ScalarField>();
let mut transcript = PoseidonSponge::<C1::ScalarField>::new(&poseidon_config);
let (U, r_bits) = NIFS::<C1, CS1, PoseidonSponge<C1::ScalarField>>::verify(
&mut transcript,
vp.pp_hash,
running_instance,
incoming_instance,
&proof.cmT,
)?;
let r = C1::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits))
.ok_or(Error::OutOfBounds)?;
let (cmE_x, cmE_y) = NonNativeAffineVar::inputize(U.cmE)?;
let (cmW_x, cmW_y) = NonNativeAffineVar::inputize(U.cmW)?;
let (cmT_x, cmT_y) = NonNativeAffineVar::inputize(proof.cmT)?;
let zero = (&C2::BaseField::zero(), &C2::BaseField::zero());
let cmE_affine = proof.cf_U_i.cmE.into_affine();
let cmW_affine = proof.cf_U_i.cmW.into_affine();
let (cf_cmE_x, cf_cmE_y) = cmE_affine.xy().unwrap_or(zero);
let cf_cmE_z = C1::ScalarField::one();
let (cf_cmW_x, cf_cmW_y) = cmW_affine.xy().unwrap_or(zero);
let cf_cmW_z = C1::ScalarField::one();
// snark proof 1
let c1_public_input: Vec<C1::ScalarField> = [
vec![vp.pp_hash, i],
z_0,
z_i,
// U_{i+1} values:
vec![U.u],
U.x.clone(),
cmE_x,
cmE_y,
cmW_x,
cmW_y,
// CS1 values:
proof.cs1_challenges.to_vec(), // c_W, c_E
vec![
proof.cs1_proofs[0].eval, // eval_W
proof.cs1_proofs[1].eval, // eval_E
],
// cf_U_i values
NonNativeUintVar::<CF2<C2>>::inputize(proof.cf_U_i.u),
proof
.cf_U_i
.x
.iter()
.flat_map(|&x_i| NonNativeUintVar::<CF2<C2>>::inputize(x_i))
.collect::<Vec<C1::ScalarField>>(),
vec![
*cf_cmE_x, *cf_cmE_y, cf_cmE_z, *cf_cmW_x, *cf_cmW_y, cf_cmW_z,
],
// NIFS values:
cmT_x,
cmT_y,
vec![r],
]
.concat();
let c1_snark_v = S1::verify(&vp.c1_snark_vp, &c1_public_input, &proof.c1_snark_proof)
.map_err(|e| Error::Other(e.to_string()))?;
if !c1_snark_v {
return Err(Error::SNARKVerificationFail);
}
let (cf2_cmE_x, cf2_cmE_y) = NonNativeAffineVar::inputize(proof.cf_U_i.cmE)?;
let (cf2_cmW_x, cf2_cmW_y) = NonNativeAffineVar::inputize(proof.cf_U_i.cmW)?;
// snark proof 2
// migrate pp_hash from C1::Fr to C1::Fq
let pp_hash_Fq =
C2::ScalarField::from_le_bytes_mod_order(&vp.pp_hash.into_bigint().to_bytes_le());
let c2_public_input: Vec<C2::ScalarField> = [
vec![pp_hash_Fq],
vec![proof.cf_U_i.u],
proof.cf_U_i.x.clone(),
cf2_cmE_x,
cf2_cmE_y,
cf2_cmW_x,
cf2_cmW_y,
proof.cs2_challenges.to_vec(),
vec![
proof.cs2_proofs[0].eval, // eval_W
proof.cs2_proofs[1].eval, // eval_E
],
]
.concat();
let c2_snark_v = S2::verify(&vp.c2_snark_vp, &c2_public_input, &proof.c2_snark_proof)
.map_err(|e| Error::Other(e.to_string()))?;
if !c2_snark_v {
return Err(Error::SNARKVerificationFail);
}
// check C1 commitments (main instance commitments)
CS1::verify_with_challenge(
&vp.c1_cs_vp,
proof.cs1_challenges[0],
&U.cmW,
&proof.cs1_proofs[0],
)?;
CS1::verify_with_challenge(
&vp.c1_cs_vp,
proof.cs1_challenges[1],
&U.cmE,
&proof.cs1_proofs[1],
)?;
// check C2 commitments (CycleFold instance commitments)
CS2::verify_with_challenge(
&vp.c2_cs_vp,
proof.cs2_challenges[0],
&proof.cf_U_i.cmW,
&proof.cs2_proofs[0],
)?;
CS2::verify_with_challenge(
&vp.c2_cs_vp,
proof.cs2_challenges[1],
&proof.cf_U_i.cmE,
&proof.cs2_proofs[1],
)?;
Ok(true)
}
}
#[cfg(test)]
pub mod tests {
use ark_groth16::Groth16;
// Note: do not use the MNTx_298 curves in practice, these are just for tests. Use the MNTx_753
// curves instead.
use ark_mnt4_298::{
constraints::G1Var as GVar, Fr, G1Projective as Projective, MNT4_298 as MNT4,
};
use ark_mnt6_298::{
constraints::G1Var as GVar2, G1Projective as Projective2, MNT6_298 as MNT6,
};
use std::time::Instant;
use super::*;
use crate::commitment::kzg::KZG;
use crate::folding::nova::PreprocessorParam;
use crate::frontend::utils::CubicFCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
#[test]
fn test_decider() {
// use Nova as FoldingScheme
type N = Nova<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, MNT4>,
KZG<'static, MNT6>,
false,
>;
type D = Decider<
Projective,
GVar,
Projective2,
GVar2,
CubicFCircuit<Fr>,
KZG<'static, MNT4>,
KZG<'static, MNT6>,
Groth16<MNT4>,
Groth16<MNT6>,
N, // here we define the FoldingScheme to use
>;
let mut rng = ark_std::test_rng();
let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
let z_0 = vec![Fr::from(3_u32)];
let start = Instant::now();
let prep_param = PreprocessorParam::new(poseidon_config, F_circuit);
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
println!("Nova preprocess, {:?}", start.elapsed());
let start = Instant::now();
let mut nova = N::init(&nova_params, F_circuit, z_0.clone()).unwrap();
println!("Nova initialized, {:?}", start.elapsed());
let start = Instant::now();
nova.prove_step(&mut rng, vec![], None).unwrap();
println!("prove_step, {:?}", start.elapsed());
nova.prove_step(&mut rng, vec![], None).unwrap(); // do a 2nd step
let mut rng = rand::rngs::OsRng;
// prepare the Decider prover & verifier params
let start = Instant::now();
let (decider_pp, decider_vp) = D::preprocess(&mut rng, nova_params, nova.clone()).unwrap();
println!("Decider preprocess, {:?}", start.elapsed());
// decider proof generation
let start = Instant::now();
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
println!("Decider prove, {:?}", start.elapsed());
// decider proof verification
let start = Instant::now();
let verified = D::verify(
decider_vp, nova.i, nova.z_0, nova.z_i, &nova.U_i, &nova.u_i, &proof,
)
.unwrap();
assert!(verified);
println!("Decider verify, {:?}", start.elapsed());
}
}