/// contains [CycleFold](https://eprint.iacr.org/2023/1192.pdf) related circuits
|
|
use ark_crypto_primitives::{
|
|
crh::{
|
|
poseidon::constraints::{CRHGadget, CRHParametersVar},
|
|
CRHSchemeGadget,
|
|
},
|
|
sponge::{
|
|
constraints::CryptographicSpongeVar,
|
|
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
|
|
Absorb, CryptographicSponge,
|
|
},
|
|
};
|
|
use ark_ec::{AffineRepr, CurveGroup};
|
|
use ark_ff::{Field, PrimeField, ToConstraintField};
|
|
use ark_r1cs_std::{
|
|
alloc::{AllocVar, AllocationMode},
|
|
boolean::Boolean,
|
|
eq::EqGadget,
|
|
fields::{fp::FpVar, FieldVar},
|
|
groups::GroupOpsBounds,
|
|
prelude::CurveVar,
|
|
ToConstraintFieldGadget,
|
|
};
|
|
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, Namespace, SynthesisError};
|
|
use ark_std::fmt::Debug;
|
|
use ark_std::{One, Zero};
|
|
use core::{borrow::Borrow, marker::PhantomData};
|
|
|
|
use super::circuits::CF2;
|
|
use super::CommittedInstance;
|
|
use crate::constants::N_BITS_RO;
|
|
use crate::folding::circuits::nonnative::uint::NonNativeUintVar;
|
|
use crate::Error;
|
|
|
|
// public inputs length for the CycleFoldCircuit: |[r, p1.x,y, p2.x,y, p3.x,y]|
|
|
pub const CF_IO_LEN: usize = 7;
|
|
|
|
/// CycleFoldCommittedInstanceVar is the CycleFold CommittedInstance representation in the Nova
|
|
/// circuit.
|
|
#[derive(Debug, Clone)]
|
|
pub struct CycleFoldCommittedInstanceVar<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
|
|
where
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
pub cmE: GC,
|
|
pub u: NonNativeUintVar<CF2<C>>,
|
|
pub cmW: GC,
|
|
pub x: Vec<NonNativeUintVar<CF2<C>>>,
|
|
}
|
|
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CycleFoldCommittedInstanceVar<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>>,
|
|
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
fn new_variable<T: Borrow<CommittedInstance<C>>>(
|
|
cs: impl Into<Namespace<CF2<C>>>,
|
|
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError> {
|
|
f().and_then(|val| {
|
|
let cs = cs.into();
|
|
|
|
let cmE = GC::new_variable(cs.clone(), || Ok(val.borrow().cmE), mode)?;
|
|
let cmW = GC::new_variable(cs.clone(), || Ok(val.borrow().cmW), mode)?;
|
|
let u = NonNativeUintVar::new_variable(cs.clone(), || Ok(val.borrow().u), mode)?;
|
|
let x = Vec::new_variable(cs.clone(), || Ok(val.borrow().x.clone()), mode)?;
|
|
|
|
Ok(Self { cmE, u, cmW, x })
|
|
})
|
|
}
|
|
}
|
|
|
|
impl<C, GC> ToConstraintFieldGadget<CF2<C>> for CycleFoldCommittedInstanceVar<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>> + ToConstraintFieldGadget<CF2<C>>,
|
|
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField + Absorb,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
// Extract the underlying field elements from `CycleFoldCommittedInstanceVar`, in the order of
|
|
// `u`, `x`, `cmE.x`, `cmE.y`, `cmW.x`, `cmW.y`, `cmE.is_inf || cmW.is_inf` (|| is for concat).
|
|
fn to_constraint_field(&self) -> Result<Vec<FpVar<CF2<C>>>, SynthesisError> {
|
|
let mut cmE_elems = self.cmE.to_constraint_field()?;
|
|
let mut cmW_elems = self.cmW.to_constraint_field()?;
|
|
|
|
let cmE_is_inf = cmE_elems.pop().unwrap();
|
|
let cmW_is_inf = cmW_elems.pop().unwrap();
|
|
// Concatenate `cmE_is_inf` and `cmW_is_inf` to save constraints for CRHGadget::evaluate
|
|
let is_inf = cmE_is_inf.double()? + cmW_is_inf;
|
|
|
|
Ok([
|
|
self.u.to_constraint_field()?,
|
|
self.x
|
|
.iter()
|
|
.map(|i| i.to_constraint_field())
|
|
.collect::<Result<Vec<_>, _>>()?
|
|
.concat(),
|
|
cmE_elems,
|
|
cmW_elems,
|
|
vec![is_inf],
|
|
]
|
|
.concat())
|
|
}
|
|
}
|
|
|
|
impl<C, GC> CycleFoldCommittedInstanceVar<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>> + ToConstraintFieldGadget<CF2<C>>,
|
|
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField + Absorb,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
/// hash implements the committed instance hash compatible with the native implementation from
|
|
/// CommittedInstance.hash_cyclefold.
|
|
/// Returns `H(U_i)`, where `U` is the `CommittedInstance` for CycleFold.
|
|
/// Additionally it returns the vector of the field elements from the self parameters, so they
|
|
/// can be reused in other gadgets avoiding recalculating (reconstraining) them.
|
|
#[allow(clippy::type_complexity)]
|
|
pub fn hash(
|
|
self,
|
|
crh_params: &CRHParametersVar<CF2<C>>,
|
|
) -> Result<(FpVar<CF2<C>>, Vec<FpVar<CF2<C>>>), SynthesisError> {
|
|
let U_vec = self.to_constraint_field()?;
|
|
Ok((CRHGadget::evaluate(crh_params, &U_vec)?, U_vec))
|
|
}
|
|
}
|
|
|
|
/// CommittedInstanceInCycleFoldVar represents the Nova CommittedInstance in the CycleFold circuit,
|
|
/// where the commitments to E and W (cmW and cmW) from the CommittedInstance on the E2,
|
|
/// represented as native points, which are folded on the auxiliary curve constraints field (E2::Fr
|
|
/// = E1::Fq).
|
|
#[derive(Debug, Clone)]
|
|
pub struct CommittedInstanceInCycleFoldVar<C: CurveGroup, GC: CurveVar<C, CF2<C>>>
|
|
where
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
_c: PhantomData<C>,
|
|
pub cmE: GC,
|
|
pub cmW: GC,
|
|
}
|
|
|
|
impl<C, GC> AllocVar<CommittedInstance<C>, CF2<C>> for CommittedInstanceInCycleFoldVar<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>>,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
fn new_variable<T: Borrow<CommittedInstance<C>>>(
|
|
cs: impl Into<Namespace<CF2<C>>>,
|
|
f: impl FnOnce() -> Result<T, SynthesisError>,
|
|
mode: AllocationMode,
|
|
) -> Result<Self, SynthesisError> {
|
|
f().and_then(|val| {
|
|
let cs = cs.into();
|
|
|
|
let cmE = GC::new_variable(cs.clone(), || Ok(val.borrow().cmE), mode)?;
|
|
let cmW = GC::new_variable(cs.clone(), || Ok(val.borrow().cmW), mode)?;
|
|
|
|
Ok(Self {
|
|
_c: PhantomData,
|
|
cmE,
|
|
cmW,
|
|
})
|
|
})
|
|
}
|
|
}
|
|
|
|
/// This is the gadget used in the AugmentedFCircuit to verify the CycleFold instances folding,
|
|
/// which checks the correct RLC of u,x,cmE,cmW (hence the name containing 'Full', since it checks
|
|
/// all the RLC values, not only the native ones). It assumes that ci2.cmE=0, ci2.u=1.
|
|
pub struct NIFSFullGadget<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
|
|
_c: PhantomData<C>,
|
|
_gc: PhantomData<GC>,
|
|
}
|
|
|
|
impl<C: CurveGroup, GC: CurveVar<C, CF2<C>>> NIFSFullGadget<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>>,
|
|
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
pub fn fold_committed_instance(
|
|
// assumes that r_bits is equal to r_nonnat just that in a different format
|
|
r_bits: Vec<Boolean<CF2<C>>>,
|
|
r_nonnat: NonNativeUintVar<CF2<C>>,
|
|
cmT: GC,
|
|
ci1: CycleFoldCommittedInstanceVar<C, GC>,
|
|
// ci2 is assumed to be always with cmE=0, u=1 (checks done previous to this method)
|
|
ci2: CycleFoldCommittedInstanceVar<C, GC>,
|
|
) -> Result<CycleFoldCommittedInstanceVar<C, GC>, SynthesisError> {
|
|
Ok(CycleFoldCommittedInstanceVar {
|
|
cmE: cmT.scalar_mul_le(r_bits.iter())? + ci1.cmE,
|
|
cmW: ci1.cmW + ci2.cmW.scalar_mul_le(r_bits.iter())?,
|
|
u: ci1.u.add_no_align(&r_nonnat).modulo::<C::ScalarField>()?,
|
|
x: ci1
|
|
.x
|
|
.iter()
|
|
.zip(ci2.x)
|
|
.map(|(a, b)| {
|
|
a.add_no_align(&r_nonnat.mul_no_align(&b)?)
|
|
.modulo::<C::ScalarField>()
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?,
|
|
})
|
|
}
|
|
|
|
pub fn verify(
|
|
// assumes that r_bits is equal to r_nonnat just that in a different format
|
|
r_bits: Vec<Boolean<CF2<C>>>,
|
|
r_nonnat: NonNativeUintVar<CF2<C>>,
|
|
cmT: GC,
|
|
ci1: CycleFoldCommittedInstanceVar<C, GC>,
|
|
// ci2 is assumed to be always with cmE=0, u=1 (checks done previous to this method)
|
|
ci2: CycleFoldCommittedInstanceVar<C, GC>,
|
|
ci3: CycleFoldCommittedInstanceVar<C, GC>,
|
|
) -> Result<(), SynthesisError> {
|
|
let ci = Self::fold_committed_instance(r_bits, r_nonnat, cmT, ci1, ci2)?;
|
|
|
|
ci.cmE.enforce_equal(&ci3.cmE)?;
|
|
ci.u.enforce_equal_unaligned(&ci3.u)?;
|
|
ci.cmW.enforce_equal(&ci3.cmW)?;
|
|
for (x, y) in ci.x.iter().zip(ci3.x.iter()) {
|
|
x.enforce_equal_unaligned(y)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// CycleFoldChallengeGadget computes the RO challenge used for the CycleFold instances NIFS, it contains a
|
|
/// rust-native and a in-circuit compatible versions.
|
|
pub struct CycleFoldChallengeGadget<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
|
|
_c: PhantomData<C>, // Nova's Curve2, the one used for the CycleFold circuit
|
|
_gc: PhantomData<GC>,
|
|
}
|
|
impl<C, GC> CycleFoldChallengeGadget<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>> + ToConstraintFieldGadget<CF2<C>>,
|
|
<C as CurveGroup>::BaseField: PrimeField,
|
|
<C as CurveGroup>::BaseField: Absorb,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
pub fn get_challenge_native(
|
|
poseidon_config: &PoseidonConfig<C::BaseField>,
|
|
U_i: CommittedInstance<C>,
|
|
u_i: CommittedInstance<C>,
|
|
cmT: C,
|
|
) -> Result<Vec<bool>, Error> {
|
|
let mut sponge = PoseidonSponge::<C::BaseField>::new(poseidon_config);
|
|
|
|
let mut U_vec = U_i.to_field_elements().unwrap();
|
|
let mut u_vec = u_i.to_field_elements().unwrap();
|
|
let (cmT_x, cmT_y, cmT_is_inf) = match cmT.into_affine().xy() {
|
|
Some((&x, &y)) => (x, y, C::BaseField::zero()),
|
|
None => (
|
|
C::BaseField::zero(),
|
|
C::BaseField::zero(),
|
|
C::BaseField::one(),
|
|
),
|
|
};
|
|
|
|
let U_cm_is_inf = U_vec.pop().unwrap();
|
|
let u_cm_is_inf = u_vec.pop().unwrap();
|
|
|
|
// Concatenate `U_i.cmE_is_inf`, `U_i.cmW_is_inf`, `u_i.cmE_is_inf`, `u_i.cmW_is_inf`, `cmT_is_inf`
|
|
// to save constraints for sponge.squeeze_bits in the corresponding circuit
|
|
let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double() + cmT_is_inf;
|
|
|
|
let input = [U_vec, u_vec, vec![cmT_x, cmT_y, is_inf]].concat();
|
|
sponge.absorb(&input);
|
|
let bits = sponge.squeeze_bits(N_BITS_RO);
|
|
Ok(bits)
|
|
}
|
|
|
|
// compatible with the native get_challenge_native
|
|
pub fn get_challenge_gadget(
|
|
cs: ConstraintSystemRef<C::BaseField>,
|
|
poseidon_config: &PoseidonConfig<C::BaseField>,
|
|
mut U_i_vec: Vec<FpVar<C::BaseField>>,
|
|
u_i: CycleFoldCommittedInstanceVar<C, GC>,
|
|
cmT: GC,
|
|
) -> Result<Vec<Boolean<C::BaseField>>, SynthesisError> {
|
|
let mut sponge = PoseidonSpongeVar::<C::BaseField>::new(cs, poseidon_config);
|
|
|
|
let mut u_i_vec = u_i.to_constraint_field()?;
|
|
let mut cmT_vec = cmT.to_constraint_field()?;
|
|
|
|
let U_cm_is_inf = U_i_vec.pop().unwrap();
|
|
let u_cm_is_inf = u_i_vec.pop().unwrap();
|
|
let cmT_is_inf = cmT_vec.pop().unwrap();
|
|
|
|
// Concatenate `U_i.cmE_is_inf`, `U_i.cmW_is_inf`, `u_i.cmE_is_inf`, `u_i.cmW_is_inf`, `cmT_is_inf`
|
|
// to save constraints for sponge.squeeze_bits
|
|
let is_inf = U_cm_is_inf * CF2::<C>::from(8u8) + u_cm_is_inf.double()? + cmT_is_inf;
|
|
|
|
let input = [U_i_vec, u_i_vec, cmT_vec, vec![is_inf]].concat();
|
|
sponge.absorb(&input)?;
|
|
let bits = sponge.squeeze_bits(N_BITS_RO)?;
|
|
Ok(bits)
|
|
}
|
|
}
|
|
|
|
/// CycleFoldCircuit contains the constraints that check the correct fold of the committed
|
|
/// instances from Curve1. Namely, it checks the random linear combinations of the elliptic curve
|
|
/// (Curve1) points of u_i, U_i leading to U_{i+1}
|
|
#[derive(Debug, Clone)]
|
|
pub struct CycleFoldCircuit<C: CurveGroup, GC: CurveVar<C, CF2<C>>> {
|
|
pub _gc: PhantomData<GC>,
|
|
pub r_bits: Option<Vec<bool>>,
|
|
pub p1: Option<C>,
|
|
pub p2: Option<C>,
|
|
pub x: Option<Vec<CF2<C>>>, // public inputs (cf_u_{i+1}.x)
|
|
}
|
|
impl<C: CurveGroup, GC: CurveVar<C, CF2<C>>> CycleFoldCircuit<C, GC> {
|
|
pub fn empty() -> Self {
|
|
Self {
|
|
_gc: PhantomData,
|
|
r_bits: None,
|
|
p1: None,
|
|
p2: None,
|
|
x: None,
|
|
}
|
|
}
|
|
}
|
|
impl<C, GC> ConstraintSynthesizer<CF2<C>> for CycleFoldCircuit<C, GC>
|
|
where
|
|
C: CurveGroup,
|
|
GC: CurveVar<C, CF2<C>> + ToConstraintFieldGadget<CF2<C>>,
|
|
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
|
|
for<'a> &'a GC: GroupOpsBounds<'a, C, GC>,
|
|
{
|
|
fn generate_constraints(self, cs: ConstraintSystemRef<CF2<C>>) -> Result<(), SynthesisError> {
|
|
let r_bits: Vec<Boolean<CF2<C>>> = Vec::new_witness(cs.clone(), || {
|
|
Ok(self.r_bits.unwrap_or(vec![false; N_BITS_RO]))
|
|
})?;
|
|
let p1 = GC::new_witness(cs.clone(), || Ok(self.p1.unwrap_or(C::zero())))?;
|
|
let p2 = GC::new_witness(cs.clone(), || Ok(self.p2.unwrap_or(C::zero())))?;
|
|
// Fold the original Nova instances natively in CycleFold
|
|
// For the cmW we're computing: U_i1.cmW = U_i.cmW + r * u_i.cmW
|
|
// For the cmE we're computing: U_i1.cmE = U_i.cmE + r * cmT + r^2 * u_i.cmE, where u_i.cmE
|
|
// is assumed to be 0, so, U_i1.cmE = U_i.cmE + r * cmT
|
|
let p3 = &p1 + p2.scalar_mul_le(r_bits.iter())?;
|
|
|
|
let x = Vec::<FpVar<CF2<C>>>::new_input(cs.clone(), || {
|
|
Ok(self.x.unwrap_or(vec![CF2::<C>::zero(); CF_IO_LEN]))
|
|
})?;
|
|
#[cfg(test)]
|
|
assert_eq!(x.len(), CF_IO_LEN); // non-constrained sanity check
|
|
|
|
// check that the points coordinates are placed as the public input x: x == [r, p1, p2, p3]
|
|
let r: FpVar<CF2<C>> = Boolean::le_bits_to_fp_var(&r_bits)?;
|
|
let points_coords: Vec<FpVar<CF2<C>>> = [
|
|
vec![r],
|
|
p1.to_constraint_field()?[..2].to_vec(),
|
|
p2.to_constraint_field()?[..2].to_vec(),
|
|
p3.to_constraint_field()?[..2].to_vec(),
|
|
]
|
|
.concat();
|
|
points_coords.enforce_equal(&x)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_bn254::{constraints::GVar, Fq, Fr, G1Projective as Projective};
|
|
use ark_ff::BigInteger;
|
|
use ark_r1cs_std::R1CSVar;
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
use ark_std::UniformRand;
|
|
|
|
use crate::folding::nova::get_cm_coordinates;
|
|
use crate::folding::nova::nifs::tests::prepare_simple_fold_inputs;
|
|
use crate::transcript::poseidon::poseidon_canonical_config;
|
|
|
|
#[test]
|
|
fn test_committed_instance_cyclefold_var() {
|
|
let mut rng = ark_std::test_rng();
|
|
|
|
let ci = CommittedInstance::<Projective> {
|
|
cmE: Projective::rand(&mut rng),
|
|
u: Fr::rand(&mut rng),
|
|
cmW: Projective::rand(&mut rng),
|
|
x: vec![Fr::rand(&mut rng); 1],
|
|
};
|
|
|
|
// check the instantiation of the CycleFold side:
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
let ciVar =
|
|
CommittedInstanceInCycleFoldVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(ci.clone())
|
|
})
|
|
.unwrap();
|
|
assert_eq!(ciVar.cmE.value().unwrap(), ci.cmE);
|
|
assert_eq!(ciVar.cmW.value().unwrap(), ci.cmW);
|
|
}
|
|
|
|
#[test]
|
|
fn test_CycleFoldCircuit_constraints() {
|
|
let (_, _, _, _, ci1, _, ci2, _, ci3, _, cmT, r_bits, _) = prepare_simple_fold_inputs();
|
|
let r_Fq = Fq::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
|
|
|
|
// cs is the Constraint System on the Curve Cycle auxiliary curve constraints field
|
|
// (E1::Fq=E2::Fr)
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
|
|
let cfW_u_i_x: Vec<Fq> = [
|
|
vec![r_Fq],
|
|
get_cm_coordinates(&ci1.cmW),
|
|
get_cm_coordinates(&ci2.cmW),
|
|
get_cm_coordinates(&ci3.cmW),
|
|
]
|
|
.concat();
|
|
let cfW_circuit = CycleFoldCircuit::<Projective, GVar> {
|
|
_gc: PhantomData,
|
|
r_bits: Some(r_bits.clone()),
|
|
p1: Some(ci1.clone().cmW),
|
|
p2: Some(ci2.clone().cmW),
|
|
x: Some(cfW_u_i_x.clone()),
|
|
};
|
|
cfW_circuit.generate_constraints(cs.clone()).unwrap();
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// same for E:
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
let cfE_u_i_x = [
|
|
vec![r_Fq],
|
|
get_cm_coordinates(&ci1.cmE),
|
|
get_cm_coordinates(&cmT),
|
|
get_cm_coordinates(&ci3.cmE),
|
|
]
|
|
.concat();
|
|
let cfE_circuit = CycleFoldCircuit::<Projective, GVar> {
|
|
_gc: PhantomData,
|
|
r_bits: Some(r_bits.clone()),
|
|
p1: Some(ci1.clone().cmE),
|
|
p2: Some(cmT),
|
|
x: Some(cfE_u_i_x.clone()),
|
|
};
|
|
cfE_circuit.generate_constraints(cs.clone()).unwrap();
|
|
assert!(cs.is_satisfied().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_nifs_full_gadget() {
|
|
let (_, _, _, _, ci1, _, ci2, _, ci3, _, cmT, r_bits, r_Fr) = prepare_simple_fold_inputs();
|
|
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
|
|
let r_nonnatVar = NonNativeUintVar::<Fq>::new_witness(cs.clone(), || Ok(r_Fr)).unwrap();
|
|
let r_bitsVar = Vec::<Boolean<Fq>>::new_witness(cs.clone(), || Ok(r_bits)).unwrap();
|
|
|
|
let ci1Var =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(ci1.clone())
|
|
})
|
|
.unwrap();
|
|
let ci2Var =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(ci2.clone())
|
|
})
|
|
.unwrap();
|
|
let ci3Var =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(ci3.clone())
|
|
})
|
|
.unwrap();
|
|
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
|
|
|
|
NIFSFullGadget::<Projective, GVar>::verify(
|
|
r_bitsVar,
|
|
r_nonnatVar,
|
|
cmTVar,
|
|
ci1Var,
|
|
ci2Var,
|
|
ci3Var,
|
|
)
|
|
.unwrap();
|
|
assert!(cs.is_satisfied().unwrap());
|
|
}
|
|
|
|
#[test]
|
|
fn test_cyclefold_challenge_gadget() {
|
|
let mut rng = ark_std::test_rng();
|
|
let poseidon_config = poseidon_canonical_config::<Fq>();
|
|
|
|
let u_i = CommittedInstance::<Projective> {
|
|
cmE: Projective::zero(), // zero on purpose, so we test also the zero point case
|
|
u: Fr::zero(),
|
|
cmW: Projective::rand(&mut rng),
|
|
x: std::iter::repeat_with(|| Fr::rand(&mut rng))
|
|
.take(CF_IO_LEN)
|
|
.collect(),
|
|
};
|
|
let U_i = CommittedInstance::<Projective> {
|
|
cmE: Projective::rand(&mut rng),
|
|
u: Fr::rand(&mut rng),
|
|
cmW: Projective::rand(&mut rng),
|
|
x: std::iter::repeat_with(|| Fr::rand(&mut rng))
|
|
.take(CF_IO_LEN)
|
|
.collect(),
|
|
};
|
|
let cmT = Projective::rand(&mut rng);
|
|
|
|
// compute the challenge natively
|
|
let r_bits = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_native(
|
|
&poseidon_config,
|
|
U_i.clone(),
|
|
u_i.clone(),
|
|
cmT,
|
|
)
|
|
.unwrap();
|
|
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
let u_iVar =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(u_i.clone())
|
|
})
|
|
.unwrap();
|
|
let U_iVar =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(U_i.clone())
|
|
})
|
|
.unwrap();
|
|
let cmTVar = GVar::new_witness(cs.clone(), || Ok(cmT)).unwrap();
|
|
|
|
let r_bitsVar = CycleFoldChallengeGadget::<Projective, GVar>::get_challenge_gadget(
|
|
cs.clone(),
|
|
&poseidon_config,
|
|
U_iVar.to_constraint_field().unwrap(),
|
|
u_iVar,
|
|
cmTVar,
|
|
)
|
|
.unwrap();
|
|
assert!(cs.is_satisfied().unwrap());
|
|
|
|
// check that the natively computed and in-circuit computed hashes match
|
|
let rVar = Boolean::le_bits_to_fp_var(&r_bitsVar).unwrap();
|
|
let r = Fq::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
|
|
assert_eq!(rVar.value().unwrap(), r);
|
|
assert_eq!(r_bitsVar.value().unwrap(), r_bits);
|
|
}
|
|
|
|
#[test]
|
|
fn test_cyclefold_hash_gadget() {
|
|
let mut rng = ark_std::test_rng();
|
|
let poseidon_config = poseidon_canonical_config::<Fq>();
|
|
|
|
let U_i = CommittedInstance::<Projective> {
|
|
cmE: Projective::rand(&mut rng),
|
|
u: Fr::rand(&mut rng),
|
|
cmW: Projective::rand(&mut rng),
|
|
x: std::iter::repeat_with(|| Fr::rand(&mut rng))
|
|
.take(CF_IO_LEN)
|
|
.collect(),
|
|
};
|
|
let h = U_i.hash_cyclefold(&poseidon_config).unwrap();
|
|
|
|
let cs = ConstraintSystem::<Fq>::new_ref();
|
|
let U_iVar =
|
|
CycleFoldCommittedInstanceVar::<Projective, GVar>::new_witness(cs.clone(), || {
|
|
Ok(U_i.clone())
|
|
})
|
|
.unwrap();
|
|
let (hVar, _) = U_iVar
|
|
.hash(&CRHParametersVar::new_constant(cs.clone(), poseidon_config).unwrap())
|
|
.unwrap();
|
|
hVar.enforce_equal(&FpVar::new_witness(cs.clone(), || Ok(h)).unwrap())
|
|
.unwrap();
|
|
assert!(cs.is_satisfied().unwrap());
|
|
}
|
|
}
|