#![allow(non_snake_case)]
|
|
#![allow(non_upper_case_globals)]
|
|
#![allow(non_camel_case_types)]
|
|
#![allow(clippy::upper_case_acronyms)]
|
|
|
|
use ark_crypto_primitives::crh::{
|
|
sha256::{
|
|
constraints::{Sha256Gadget, UnitVar},
|
|
Sha256,
|
|
},
|
|
CRHScheme, CRHSchemeGadget,
|
|
};
|
|
use ark_ff::{BigInteger, PrimeField, ToConstraintField};
|
|
use ark_r1cs_std::{fields::fp::FpVar, ToBytesGadget, ToConstraintFieldGadget};
|
|
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
|
|
use core::marker::PhantomData;
|
|
use std::time::Instant;
|
|
|
|
use ark_pallas::{constraints::GVar, Fr, Projective};
|
|
use ark_vesta::{constraints::GVar as GVar2, Projective as Projective2};
|
|
|
|
use folding_schemes::commitment::pedersen::Pedersen;
|
|
use folding_schemes::folding::nova::Nova;
|
|
use folding_schemes::frontend::FCircuit;
|
|
use folding_schemes::{Error, FoldingScheme};
|
|
mod utils;
|
|
use utils::test_nova_setup;
|
|
|
|
/// This is the circuit that we want to fold, it implements the FCircuit trait.
|
|
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
|
|
/// applying the step.
|
|
/// In this example we set z_i and z_{i+1} to be a single value, but the trait is made to support
|
|
/// arrays, so our state could be an array with different values.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct Sha256FCircuit<F: PrimeField> {
|
|
_f: PhantomData<F>,
|
|
}
|
|
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
|
|
type Params = ();
|
|
|
|
fn new(_params: Self::Params) -> Self {
|
|
Self { _f: PhantomData }
|
|
}
|
|
fn state_len(&self) -> usize {
|
|
1
|
|
}
|
|
|
|
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
|
|
/// z_{i+1}
|
|
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
|
|
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
|
|
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
|
|
|
|
Ok(vec![out[0]])
|
|
}
|
|
|
|
/// generates the constraints for the step of F for the given z_i
|
|
fn generate_step_constraints(
|
|
&self,
|
|
_cs: ConstraintSystemRef<F>,
|
|
_i: usize,
|
|
z_i: Vec<FpVar<F>>,
|
|
) -> Result<Vec<FpVar<F>>, SynthesisError> {
|
|
let unit_var = UnitVar::default();
|
|
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
|
|
let out = out_bytes.0.to_constraint_field()?;
|
|
Ok(vec![out[0].clone()])
|
|
}
|
|
}
|
|
|
|
/// cargo test --example sha256
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
|
|
use ark_relations::r1cs::ConstraintSystem;
|
|
|
|
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
|
|
#[test]
|
|
fn test_f_circuit() {
|
|
let cs = ConstraintSystem::<Fr>::new_ref();
|
|
|
|
let circuit = Sha256FCircuit::<Fr>::new(());
|
|
let z_i = vec![Fr::from(1_u32)];
|
|
|
|
let z_i1 = circuit.step_native(0, z_i.clone()).unwrap();
|
|
|
|
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
|
|
let computed_z_i1Var = circuit
|
|
.generate_step_constraints(cs.clone(), 0, z_iVar.clone())
|
|
.unwrap();
|
|
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
|
|
}
|
|
}
|
|
|
|
/// cargo run --release --example sha256
|
|
fn main() {
|
|
let num_steps = 10;
|
|
let initial_state = vec![Fr::from(1_u32)];
|
|
|
|
let F_circuit = Sha256FCircuit::<Fr>::new(());
|
|
|
|
println!("Prepare Nova ProverParams & VerifierParams");
|
|
let (prover_params, verifier_params) = test_nova_setup::<Sha256FCircuit<Fr>>(F_circuit);
|
|
|
|
/// The idea here is that eventually we could replace the next line chunk that defines the
|
|
/// `type NOVA = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
|
|
/// trait, and the rest of our code would be working without needing to be updated.
|
|
type NOVA = Nova<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
Sha256FCircuit<Fr>,
|
|
Pedersen<Projective>,
|
|
Pedersen<Projective2>,
|
|
>;
|
|
|
|
println!("Initialize FoldingScheme");
|
|
let mut folding_scheme = NOVA::init(&prover_params, F_circuit, initial_state.clone()).unwrap();
|
|
|
|
// compute a step of the IVC
|
|
for i in 0..num_steps {
|
|
let start = Instant::now();
|
|
folding_scheme.prove_step().unwrap();
|
|
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
|
|
}
|
|
|
|
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
|
|
|
|
println!("Run the Nova's IVC verifier");
|
|
NOVA::verify(
|
|
verifier_params,
|
|
initial_state,
|
|
folding_scheme.state(), // latest state
|
|
Fr::from(num_steps as u32),
|
|
running_instance,
|
|
incoming_instance,
|
|
cyclefold_instance,
|
|
)
|
|
.unwrap();
|
|
}
|