You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

186 lines
6.7 KiB

use crate::Error;
use ark_ff::PrimeField;
use ark_r1cs_std::fields::fp::FpVar;
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use ark_std::fmt::Debug;
pub mod circom;
/// FCircuit defines the trait of the circuit of the F function, which is the one being folded (ie.
/// inside the agmented F' function).
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state after applying
/// the step.
pub trait FCircuit<F: PrimeField>: Clone + Debug {
type Params: Debug;
/// returns a new FCircuit instance
fn new(params: Self::Params) -> Self;
/// returns the number of elements in the state of the FCircuit, which corresponds to the
/// FCircuit inputs.
fn state_len(&self) -> usize;
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(
// this method uses self, so that each FCircuit implementation (and different frontends)
// can hold a state if needed to store data to compute the next state.
&self,
i: usize,
z_i: Vec<F>,
) -> Result<Vec<F>, Error>;
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
// this method uses self, so that each FCircuit implementation (and different frontends)
// can hold a state if needed to store data to generate the constraints.
&self,
cs: ConstraintSystemRef<F>,
i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError>;
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_bn254::Fr;
use ark_r1cs_std::{alloc::AllocVar, eq::EqGadget};
use ark_relations::r1cs::{
ConstraintSynthesizer, ConstraintSystem, ConstraintSystemRef, SynthesisError,
};
use core::marker::PhantomData;
/// CubicFCircuit is a struct that implements the FCircuit trait, for the R1CS example circuit
/// from https://www.vitalik.ca/general/2016/12/10/qap.html, which checks `x^3 + x + 5 = y`.
/// `z_i` is used as `x`, and `z_{i+1}` is used as `y`, and at the next step, `z_{i+1}` will be
/// assigned to `z_i`, and a new `z+{i+1}` will be computted.
#[derive(Clone, Copy, Debug)]
pub struct CubicFCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for CubicFCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Self {
Self { _f: PhantomData }
}
fn state_len(&self) -> usize {
1
}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
Ok(vec![z_i[0] * z_i[0] * z_i[0] + z_i[0] + F::from(5_u32)])
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let five = FpVar::<F>::new_constant(cs.clone(), F::from(5u32))?;
let z_i = z_i[0].clone();
Ok(vec![&z_i * &z_i * &z_i + &z_i + &five])
}
}
/// CustomFCircuit is a circuit that has the number of constraints specified in the
/// `n_constraints` parameter. Note that the generated circuit will have very sparse matrices.
#[derive(Clone, Copy, Debug)]
pub struct CustomFCircuit<F: PrimeField> {
_f: PhantomData<F>,
pub n_constraints: usize,
}
impl<F: PrimeField> FCircuit<F> for CustomFCircuit<F> {
type Params = usize;
fn new(params: Self::Params) -> Self {
Self {
_f: PhantomData,
n_constraints: params,
}
}
fn state_len(&self) -> usize {
1
}
fn step_native(&self, _i: usize, z_i: Vec<F>) -> Result<Vec<F>, Error> {
let mut z_i1 = F::one();
for _ in 0..self.n_constraints - 1 {
z_i1 *= z_i[0];
}
Ok(vec![z_i1])
}
fn generate_step_constraints(
&self,
cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let mut z_i1 = FpVar::<F>::new_witness(cs.clone(), || Ok(F::one()))?;
for _ in 0..self.n_constraints - 1 {
z_i1 *= z_i[0].clone();
}
Ok(vec![z_i1])
}
}
/// WrapperCircuit is a circuit that wraps any circuit that implements the FCircuit trait. This
/// is used to test the `FCircuit.generate_step_constraints` method. This is a similar wrapping
/// than the one done in the `AugmentedFCircuit`, but without adding all the extra constraints
/// of the AugmentedF circuit logic, in order to run lighter tests when we're not interested in
/// the the AugmentedF logic but in the wrapping of the circuits.
pub struct WrapperCircuit<F: PrimeField, FC: FCircuit<F>> {
pub FC: FC, // F circuit
pub z_i: Option<Vec<F>>,
pub z_i1: Option<Vec<F>>,
}
impl<F, FC> ConstraintSynthesizer<F> for WrapperCircuit<F, FC>
where
F: PrimeField,
FC: FCircuit<F>,
{
fn generate_constraints(self, cs: ConstraintSystemRef<F>) -> Result<(), SynthesisError> {
let z_i = Vec::<FpVar<F>>::new_witness(cs.clone(), || {
Ok(self.z_i.unwrap_or(vec![F::zero()]))
})?;
let z_i1 = Vec::<FpVar<F>>::new_input(cs.clone(), || {
Ok(self.z_i1.unwrap_or(vec![F::zero()]))
})?;
let computed_z_i1 = self
.FC
.generate_step_constraints(cs.clone(), 0, z_i.clone())?;
computed_z_i1.enforce_equal(&z_i1)?;
Ok(())
}
}
#[test]
fn test_testfcircuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let F_circuit = CubicFCircuit::<Fr>::new(());
let wrapper_circuit = WrapperCircuit::<Fr, CubicFCircuit<Fr>> {
FC: F_circuit,
z_i: Some(vec![Fr::from(3_u32)]),
z_i1: Some(vec![Fr::from(35_u32)]),
};
wrapper_circuit.generate_constraints(cs.clone()).unwrap();
assert_eq!(cs.num_constraints(), 3);
}
#[test]
fn test_customtestfcircuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let n_constraints = 1000;
let custom_circuit = CustomFCircuit::<Fr>::new(n_constraints);
let z_i = vec![Fr::from(5_u32)];
let wrapper_circuit = WrapperCircuit::<Fr, CustomFCircuit<Fr>> {
FC: custom_circuit,
z_i: Some(z_i.clone()),
z_i1: Some(custom_circuit.step_native(0, z_i).unwrap()),
};
wrapper_circuit.generate_constraints(cs.clone()).unwrap();
assert_eq!(cs.num_constraints(), n_constraints);
}
}