You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

153 lines
5.1 KiB

#![allow(non_snake_case)]
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(clippy::upper_case_acronyms)]
use ark_crypto_primitives::crh::{
sha256::{
constraints::{Sha256Gadget, UnitVar},
Sha256,
},
CRHScheme, CRHSchemeGadget,
};
use ark_ff::{BigInteger, PrimeField, ToConstraintField};
use ark_r1cs_std::{fields::fp::FpVar, ToBytesGadget, ToConstraintFieldGadget};
use ark_relations::r1cs::{ConstraintSystemRef, SynthesisError};
use core::marker::PhantomData;
use std::time::Instant;
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use folding_schemes::commitment::{kzg::KZG, pedersen::Pedersen};
use folding_schemes::folding::nova::{Nova, PreprocessorParam};
use folding_schemes::frontend::FCircuit;
use folding_schemes::transcript::poseidon::poseidon_canonical_config;
use folding_schemes::{Error, FoldingScheme};
/// This is the circuit that we want to fold, it implements the FCircuit trait.
/// The parameter z_i denotes the current state, and z_{i+1} denotes the next state which we get by
/// applying the step.
/// In this example we set z_i and z_{i+1} to be a single value, but the trait is made to support
/// arrays, so our state could be an array with different values.
#[derive(Clone, Copy, Debug)]
pub struct Sha256FCircuit<F: PrimeField> {
_f: PhantomData<F>,
}
impl<F: PrimeField> FCircuit<F> for Sha256FCircuit<F> {
type Params = ();
fn new(_params: Self::Params) -> Result<Self, Error> {
Ok(Self { _f: PhantomData })
}
fn state_len(&self) -> usize {
1
}
fn external_inputs_len(&self) -> usize {
0
}
/// computes the next state values in place, assigning z_{i+1} into z_i, and computing the new
/// z_{i+1}
fn step_native(
&self,
_i: usize,
z_i: Vec<F>,
_external_inputs: Vec<F>,
) -> Result<Vec<F>, Error> {
let out_bytes = Sha256::evaluate(&(), z_i[0].into_bigint().to_bytes_le()).unwrap();
let out: Vec<F> = out_bytes.to_field_elements().unwrap();
Ok(vec![out[0]])
}
/// generates the constraints for the step of F for the given z_i
fn generate_step_constraints(
&self,
_cs: ConstraintSystemRef<F>,
_i: usize,
z_i: Vec<FpVar<F>>,
_external_inputs: Vec<FpVar<F>>,
) -> Result<Vec<FpVar<F>>, SynthesisError> {
let unit_var = UnitVar::default();
let out_bytes = Sha256Gadget::evaluate(&unit_var, &z_i[0].to_bytes()?)?;
let out = out_bytes.0.to_constraint_field()?;
Ok(vec![out[0].clone()])
}
}
/// cargo test --example sha256
#[cfg(test)]
pub mod tests {
use super::*;
use ark_r1cs_std::{alloc::AllocVar, R1CSVar};
use ark_relations::r1cs::ConstraintSystem;
// test to check that the Sha256FCircuit computes the same values inside and outside the circuit
#[test]
fn test_f_circuit() {
let cs = ConstraintSystem::<Fr>::new_ref();
let circuit = Sha256FCircuit::<Fr>::new(()).unwrap();
let z_i = vec![Fr::from(1_u32)];
let z_i1 = circuit.step_native(0, z_i.clone(), vec![]).unwrap();
let z_iVar = Vec::<FpVar<Fr>>::new_witness(cs.clone(), || Ok(z_i)).unwrap();
let computed_z_i1Var = circuit
.generate_step_constraints(cs.clone(), 0, z_iVar.clone(), vec![])
.unwrap();
assert_eq!(computed_z_i1Var.value().unwrap(), z_i1);
}
}
/// cargo run --release --example sha256
fn main() {
let num_steps = 10;
let initial_state = vec![Fr::from(1_u32)];
let F_circuit = Sha256FCircuit::<Fr>::new(()).unwrap();
/// The idea here is that eventually we could replace the next line chunk that defines the
/// `type N = Nova<...>` by using another folding scheme that fulfills the `FoldingScheme`
/// trait, and the rest of our code would be working without needing to be updated.
type N = Nova<
Projective,
GVar,
Projective2,
GVar2,
Sha256FCircuit<Fr>,
KZG<'static, Bn254>,
Pedersen<Projective2>,
>;
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut rng = rand::rngs::OsRng;
println!("Prepare Nova ProverParams & VerifierParams");
let nova_preprocess_params = PreprocessorParam::new(poseidon_config, F_circuit);
let (nova_pp, nova_vp) = N::preprocess(&mut rng, &nova_preprocess_params).unwrap();
println!("Initialize FoldingScheme");
let mut folding_scheme = N::init(&nova_pp, F_circuit, initial_state.clone()).unwrap();
// compute a step of the IVC
for i in 0..num_steps {
let start = Instant::now();
folding_scheme.prove_step(rng, vec![]).unwrap();
println!("Nova::prove_step {}: {:?}", i, start.elapsed());
}
let (running_instance, incoming_instance, cyclefold_instance) = folding_scheme.instances();
println!("Run the Nova's IVC verifier");
N::verify(
nova_vp,
initial_state,
folding_scheme.state(), // latest state
Fr::from(num_steps as u32),
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}