You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

610 lines
21 KiB

/// Implements the scheme described in [HyperNova](https://eprint.iacr.org/2023/573.pdf)
use ark_crypto_primitives::sponge::{poseidon::PoseidonConfig, Absorb};
use ark_ec::{CurveGroup, Group};
use ark_ff::{BigInteger, PrimeField};
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
use ark_std::rand::RngCore;
use ark_std::{One, Zero};
use core::marker::PhantomData;
use std::fmt::Debug;
pub mod cccs;
pub mod circuits;
use circuits::AugmentedFCircuit;
pub mod lcccs;
pub mod nimfs;
pub mod utils;
use cccs::CCCS;
use lcccs::LCCCS;
use nimfs::NIMFS;
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::{
cyclefold::{fold_cyclefold_circuit, CycleFoldCircuit},
CF2,
};
use crate::folding::nova::{
get_r1cs_from_cs, traits::NovaR1CS, CommittedInstance, Witness as NovaWitness,
};
use crate::frontend::FCircuit;
use crate::utils::get_cm_coordinates;
use crate::Error;
use crate::FoldingScheme;
use crate::{
ccs::{
r1cs::{extract_w_x, R1CS},
CCS,
},
transcript::{poseidon::PoseidonTranscript, Transcript},
};
/// Witness for the LCCCS & CCCS, containing the w vector, and the r_w used as randomness in the Pedersen commitment.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Witness<F: PrimeField> {
pub w: Vec<F>,
pub r_w: F,
}
impl<F: PrimeField> Witness<F> {
pub fn new(w: Vec<F>) -> Self {
// note: at the current version, we don't use the blinding factors and we set them to 0
// always.
Self { w, r_w: F::zero() }
}
pub fn dummy(ccs: &CCS<F>) -> Self {
Witness::<F>::new(vec![F::zero(); ccs.n - ccs.l - 1])
}
}
#[derive(Debug, Clone)]
pub struct PreprocessorParam<C1, C2, FC, CS1, CS2>
where
C1: CurveGroup,
C2: CurveGroup,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub F: FC,
// cs_params & cf_cs_params: if not provided, will be generated at the preprocess method
pub cs_params: Option<CS1::ProverParams>,
pub cf_cs_params: Option<CS2::ProverParams>,
}
#[derive(Debug, Clone)]
pub struct ProverParams<C1, C2, CS1, CS2>
where
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub cs_params: CS1::ProverParams,
pub cf_cs_params: CS2::ProverParams,
// if ccs is set, it will be used, if not, it will be computed at runtime
pub ccs: Option<CCS<C1::ScalarField>>,
}
#[derive(Debug, Clone)]
pub struct VerifierParams<
C1: CurveGroup,
C2: CurveGroup,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
> {
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
pub ccs: CCS<C1::ScalarField>,
pub cf_r1cs: R1CS<C2::ScalarField>,
pub cs_params: CS1::ProverParams,
pub cf_cs_params: CS2::ProverParams,
}
/// Implements HyperNova+CycleFold's IVC, described in
/// [HyperNova](https://eprint.iacr.org/2023/573.pdf) and
/// [CycleFold](https://eprint.iacr.org/2023/1192.pdf), following the FoldingScheme trait
#[derive(Clone, Debug)]
pub struct HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
{
_gc1: PhantomData<GC1>,
_c2: PhantomData<C2>,
_gc2: PhantomData<GC2>,
/// CCS of the Augmented Function circuit
pub ccs: CCS<C1::ScalarField>,
/// R1CS of the CycleFold circuit
pub cf_r1cs: R1CS<C2::ScalarField>,
pub poseidon_config: PoseidonConfig<C1::ScalarField>,
/// CommitmentScheme::ProverParams over C1
pub cs_params: CS1::ProverParams,
/// CycleFold CommitmentScheme::ProverParams, over C2
pub cf_cs_params: CS2::ProverParams,
/// F circuit, the circuit that is being folded
pub F: FC,
pub i: C1::ScalarField,
/// initial state
pub z_0: Vec<C1::ScalarField>,
/// current i-th state
pub z_i: Vec<C1::ScalarField>,
/// HyperNova instances
pub W_i: Witness<C1::ScalarField>,
pub U_i: LCCCS<C1>,
pub w_i: Witness<C1::ScalarField>,
pub u_i: CCCS<C1>,
/// CycleFold running instance
pub cf_W_i: NovaWitness<C2>,
pub cf_U_i: CommittedInstance<C2>,
}
impl<C1, GC1, C2, GC2, FC, CS1, CS2> FoldingScheme<C1, C2, FC>
for HyperNova<C1, GC1, C2, GC2, FC, CS1, CS2>
where
C1: CurveGroup,
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
FC: FCircuit<C1::ScalarField>,
CS1: CommitmentScheme<C1>,
CS2: CommitmentScheme<C2>,
<C1 as CurveGroup>::BaseField: PrimeField,
<C2 as CurveGroup>::BaseField: PrimeField,
<C1 as Group>::ScalarField: Absorb,
<C2 as Group>::ScalarField: Absorb,
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
for<'a> &'a GC1: GroupOpsBounds<'a, C1, GC1>,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
type PreprocessorParam = PreprocessorParam<C1, C2, FC, CS1, CS2>;
type ProverParam = ProverParams<C1, C2, CS1, CS2>;
type VerifierParam = VerifierParams<C1, C2, CS1, CS2>;
type RunningInstance = (LCCCS<C1>, Witness<C1::ScalarField>);
type IncomingInstance = (CCCS<C1>, Witness<C1::ScalarField>);
type CFInstance = (CommittedInstance<C2>, NovaWitness<C2>);
fn preprocess(
mut rng: impl RngCore,
prep_param: &Self::PreprocessorParam,
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(
&prep_param.poseidon_config,
prep_param.F.clone(),
None,
)?;
let ccs = augmented_f_circuit.ccs.clone();
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
// if cs_params & cf_cs_params exist, use them, if not, generate new ones
let cs_params: CS1::ProverParams;
let cf_cs_params: CS2::ProverParams;
if prep_param.cs_params.is_some() && prep_param.cf_cs_params.is_some() {
cs_params = prep_param.clone().cs_params.unwrap();
cf_cs_params = prep_param.clone().cf_cs_params.unwrap();
} else {
(cs_params, _) = CS1::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
(cf_cs_params, _) = CS2::setup(&mut rng, cf_r1cs.A.n_cols - cf_r1cs.l - 1).unwrap();
}
let pp = ProverParams::<C1, C2, CS1, CS2> {
poseidon_config: prep_param.poseidon_config.clone(),
cs_params: cs_params.clone(),
cf_cs_params: cf_cs_params.clone(),
ccs: Some(ccs.clone()),
};
let vp = VerifierParams::<C1, C2, CS1, CS2> {
poseidon_config: prep_param.poseidon_config.clone(),
ccs,
cf_r1cs,
cs_params: cs_params.clone(),
cf_cs_params: cf_cs_params.clone(),
};
Ok((pp, vp))
}
/// Initializes the HyperNova+CycleFold's IVC for the given parameters and initial state `z_0`.
fn init(pp: &Self::ProverParam, F: FC, z_0: Vec<C1::ScalarField>) -> Result<Self, Error> {
// prepare the HyperNova's AugmentedFCircuit and CycleFold's circuits and obtain its CCS
// and R1CS respectively
let augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC>::empty(
&pp.poseidon_config,
F.clone(),
pp.ccs.clone(),
)?;
let ccs = augmented_f_circuit.ccs.clone();
let cf_circuit = CycleFoldCircuit::<C1, GC1>::empty();
let cf_r1cs = get_r1cs_from_cs::<C2::ScalarField>(cf_circuit)?;
// setup the dummy instances
let W_dummy = Witness::<C1::ScalarField>::dummy(&ccs);
let U_dummy = LCCCS::<C1>::dummy(ccs.l, ccs.t, ccs.s);
let w_dummy = W_dummy.clone();
let mut u_dummy = CCCS::<C1>::dummy(ccs.l);
let (cf_W_dummy, cf_U_dummy): (NovaWitness<C2>, CommittedInstance<C2>) =
cf_r1cs.dummy_instance();
u_dummy.x = vec![
U_dummy.hash(
&pp.poseidon_config,
C1::ScalarField::zero(),
z_0.clone(),
z_0.clone(),
)?,
cf_U_dummy.hash_cyclefold(&pp.poseidon_config)?,
];
// W_dummy=W_0 is a 'dummy witness', all zeroes, but with the size corresponding to the
// R1CS that we're working with.
Ok(Self {
_gc1: PhantomData,
_c2: PhantomData,
_gc2: PhantomData,
ccs,
cf_r1cs,
poseidon_config: pp.poseidon_config.clone(),
cs_params: pp.cs_params.clone(),
cf_cs_params: pp.cf_cs_params.clone(),
F,
i: C1::ScalarField::zero(),
z_0: z_0.clone(),
z_i: z_0,
W_i: W_dummy,
U_i: U_dummy,
w_i: w_dummy,
u_i: u_dummy,
// cyclefold running instance
cf_W_i: cf_W_dummy,
cf_U_i: cf_U_dummy,
})
}
/// Implements IVC.P of HyperNova+CycleFold
fn prove_step(
&mut self,
mut rng: impl RngCore,
external_inputs: Vec<C1::ScalarField>,
) -> Result<(), Error> {
let augmented_f_circuit: AugmentedFCircuit<C1, C2, GC2, FC>;
if self.z_i.len() != self.F.state_len() {
return Err(Error::NotSameLength(
"z_i.len()".to_string(),
self.z_i.len(),
"F.state_len()".to_string(),
self.F.state_len(),
));
}
if external_inputs.len() != self.F.external_inputs_len() {
return Err(Error::NotSameLength(
"F.external_inputs_len()".to_string(),
self.F.external_inputs_len(),
"external_inputs.len()".to_string(),
external_inputs.len(),
));
}
if self.i > C1::ScalarField::from_le_bytes_mod_order(&usize::MAX.to_le_bytes()) {
return Err(Error::MaxStep);
}
let mut i_bytes: [u8; 8] = [0; 8];
i_bytes.copy_from_slice(&self.i.into_bigint().to_bytes_le()[..8]);
let i_usize: usize = usize::from_le_bytes(i_bytes);
let z_i1 = self
.F
.step_native(i_usize, self.z_i.clone(), external_inputs.clone())?;
// u_{i+1}.x[1] = H(cf_U_{i+1})
let cf_u_i1_x: C1::ScalarField;
let (U_i1, W_i1);
if self.i == C1::ScalarField::zero() {
W_i1 = Witness::<C1::ScalarField>::dummy(&self.ccs);
U_i1 = LCCCS::dummy(self.ccs.l, self.ccs.t, self.ccs.s);
let u_i1_x = U_i1.hash(
&self.poseidon_config,
C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
)?;
// hash the initial (dummy) CycleFold instance, which is used as the 2nd public
// input in the AugmentedFCircuit
cf_u_i1_x = self.cf_U_i.hash_cyclefold(&self.poseidon_config)?;
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_c2: PhantomData,
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
ccs: self.ccs.clone(),
i: Some(C1::ScalarField::zero()),
i_usize: Some(0),
z_0: Some(self.z_0.clone()),
z_i: Some(self.z_i.clone()),
external_inputs: Some(external_inputs.clone()),
u_i_C: Some(self.u_i.C),
U_i: Some(self.U_i.clone()),
U_i1_C: Some(U_i1.C),
F: self.F.clone(),
x: Some(u_i1_x),
nimfs_proof: None,
// cyclefold values
cf_u_i_cmW: None,
cf_U_i: None,
cf_x: Some(cf_u_i1_x),
cf_cmT: None,
};
} else {
let mut transcript_p: PoseidonTranscript<C1> =
PoseidonTranscript::<C1>::new(&self.poseidon_config);
let (rho_bits, nimfs_proof);
(nimfs_proof, U_i1, W_i1, rho_bits) = NIMFS::<C1, PoseidonTranscript<C1>>::prove(
&mut transcript_p,
&self.ccs,
&[self.U_i.clone()],
&[self.u_i.clone()],
&[self.W_i.clone()],
&[self.w_i.clone()],
)?;
// sanity check: check the folded instance relation
#[cfg(test)]
U_i1.check_relation(&self.ccs, &W_i1)?;
let u_i1_x = U_i1.hash(
&self.poseidon_config,
self.i + C1::ScalarField::one(),
self.z_0.clone(),
z_i1.clone(),
)?;
let rho_Fq = C2::ScalarField::from_bigint(BigInteger::from_bits_le(&rho_bits))
.ok_or(Error::OutOfBounds)?;
// CycleFold part:
// get the vector used as public inputs 'x' in the CycleFold circuit
// cyclefold circuit for cmW
let cf_u_i_x = [
vec![rho_Fq],
get_cm_coordinates(&self.U_i.C),
get_cm_coordinates(&self.u_i.C),
get_cm_coordinates(&U_i1.C),
]
.concat();
let cf_circuit = CycleFoldCircuit::<C1, GC1> {
_gc: PhantomData,
r_bits: Some(rho_bits.clone()),
p1: Some(self.U_i.clone().C),
p2: Some(self.u_i.clone().C),
x: Some(cf_u_i_x.clone()),
};
let (_cf_w_i, cf_u_i, cf_W_i1, cf_U_i1, cf_cmT, _) =
fold_cyclefold_circuit::<C1, GC1, C2, GC2, FC, CS1, CS2>(
&self.poseidon_config,
self.cf_r1cs.clone(),
self.cf_cs_params.clone(),
self.cf_W_i.clone(), // CycleFold running instance witness
self.cf_U_i.clone(), // CycleFold running instance
cf_u_i_x,
cf_circuit,
)?;
cf_u_i1_x = cf_U_i1.hash_cyclefold(&self.poseidon_config)?;
augmented_f_circuit = AugmentedFCircuit::<C1, C2, GC2, FC> {
_c2: PhantomData,
_gc2: PhantomData,
poseidon_config: self.poseidon_config.clone(),
ccs: self.ccs.clone(),
i: Some(self.i),
i_usize: Some(i_usize),
z_0: Some(self.z_0.clone()),
z_i: Some(self.z_i.clone()),
external_inputs: Some(external_inputs),
u_i_C: Some(self.u_i.C),
U_i: Some(self.U_i.clone()),
U_i1_C: Some(U_i1.C),
F: self.F.clone(),
x: Some(u_i1_x),
nimfs_proof: Some(nimfs_proof),
// cyclefold values
cf_u_i_cmW: Some(cf_u_i.cmW),
cf_U_i: Some(self.cf_U_i.clone()),
cf_x: Some(cf_u_i1_x),
cf_cmT: Some(cf_cmT),
};
// assign the next round instances
self.cf_W_i = cf_W_i1;
self.cf_U_i = cf_U_i1;
}
let (cs, _) = augmented_f_circuit.compute_cs_ccs()?;
#[cfg(test)]
assert!(cs.is_satisfied()?);
let (r1cs_w_i1, r1cs_x_i1) = extract_w_x::<C1::ScalarField>(&cs); // includes 1 and public inputs
let r1cs_z = [
vec![C1::ScalarField::one()],
r1cs_x_i1.clone(),
r1cs_w_i1.clone(),
]
.concat();
// compute committed instances, w_{i+1}, u_{i+1}, which will be used as w_i, u_i, so we
// assign them directly to w_i, u_i.
let (u_i, w_i) = self
.ccs
.to_cccs::<_, C1, CS1>(&mut rng, &self.cs_params, &r1cs_z)?;
self.u_i = u_i.clone();
self.w_i = w_i.clone();
// set values for next iteration
self.i += C1::ScalarField::one();
// assign z_{i+1} into z_i
self.z_i = z_i1.clone();
self.U_i = U_i1.clone();
self.W_i = W_i1.clone();
#[cfg(test)]
{
// check the new LCCCS instance relation
self.U_i.check_relation(&self.ccs, &self.W_i)?;
// check the new CCCS instance relation
self.u_i.check_relation(&self.ccs, &self.w_i)?;
}
Ok(())
}
fn state(&self) -> Vec<C1::ScalarField> {
self.z_i.clone()
}
fn instances(
&self,
) -> (
Self::RunningInstance,
Self::IncomingInstance,
Self::CFInstance,
) {
(
(self.U_i.clone(), self.W_i.clone()),
(self.u_i.clone(), self.w_i.clone()),
(self.cf_U_i.clone(), self.cf_W_i.clone()),
)
}
/// Implements IVC.V of HyperNova+CycleFold. Notice that this method does not include the
/// commitments verification, which is done in the Decider.
fn verify(
vp: Self::VerifierParam,
z_0: Vec<C1::ScalarField>, // initial state
z_i: Vec<C1::ScalarField>, // last state
num_steps: C1::ScalarField,
running_instance: Self::RunningInstance,
incoming_instance: Self::IncomingInstance,
cyclefold_instance: Self::CFInstance,
) -> Result<(), Error> {
if num_steps == C1::ScalarField::zero() {
if z_0 != z_i {
return Err(Error::IVCVerificationFail);
}
return Ok(());
}
let (U_i, W_i) = running_instance;
let (u_i, w_i) = incoming_instance;
let (cf_U_i, cf_W_i) = cyclefold_instance;
if u_i.x.len() != 2 || U_i.x.len() != 2 {
return Err(Error::IVCVerificationFail);
}
// check that u_i's output points to the running instance
// u_i.X[0] == H(i, z_0, z_i, U_i)
let expected_u_i_x = U_i.hash(&vp.poseidon_config, num_steps, z_0, z_i.clone())?;
if expected_u_i_x != u_i.x[0] {
return Err(Error::IVCVerificationFail);
}
// u_i.X[1] == H(cf_U_i)
let expected_cf_u_i_x = cf_U_i.hash_cyclefold(&vp.poseidon_config)?;
if expected_cf_u_i_x != u_i.x[1] {
return Err(Error::IVCVerificationFail);
}
// check LCCCS satisfiability
U_i.check_relation(&vp.ccs, &W_i)?;
// check CCCS satisfiability
u_i.check_relation(&vp.ccs, &w_i)?;
// check CycleFold's RelaxedR1CS satisfiability
vp.cf_r1cs
.check_relaxed_instance_relation(&cf_W_i, &cf_U_i)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::commitment::kzg::KZG;
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
use super::*;
use crate::commitment::pedersen::Pedersen;
use crate::frontend::tests::CubicFCircuit;
use crate::transcript::poseidon::poseidon_canonical_config;
#[test]
pub fn test_ivc() {
let poseidon_config = poseidon_canonical_config::<Fr>();
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
// run the test using Pedersen commitments on both sides of the curve cycle
test_ivc_opt::<Pedersen<Projective>, Pedersen<Projective2>>(
poseidon_config.clone(),
F_circuit,
);
// run the test using KZG for the commitments on the main curve, and Pedersen for the
// commitments on the secondary curve
test_ivc_opt::<KZG<Bn254>, Pedersen<Projective2>>(poseidon_config, F_circuit);
}
// test_ivc allowing to choose the CommitmentSchemes
fn test_ivc_opt<CS1: CommitmentScheme<Projective>, CS2: CommitmentScheme<Projective2>>(
poseidon_config: PoseidonConfig<Fr>,
F_circuit: CubicFCircuit<Fr>,
) {
let mut rng = ark_std::test_rng();
type HN<CS1, CS2> =
HyperNova<Projective, GVar, Projective2, GVar2, CubicFCircuit<Fr>, CS1, CS2>;
let prep_param = PreprocessorParam::<Projective, Projective2, CubicFCircuit<Fr>, CS1, CS2> {
poseidon_config,
F: F_circuit,
cs_params: None,
cf_cs_params: None,
};
let (prover_params, verifier_params) = HN::preprocess(&mut rng, &prep_param).unwrap();
let z_0 = vec![Fr::from(3_u32)];
let mut hypernova = HN::init(&prover_params, F_circuit, z_0.clone()).unwrap();
let num_steps: usize = 3;
for _ in 0..num_steps {
hypernova.prove_step(&mut rng, vec![]).unwrap();
}
assert_eq!(Fr::from(num_steps as u32), hypernova.i);
let (running_instance, incoming_instance, cyclefold_instance) = hypernova.instances();
HN::verify(
verifier_params,
z_0,
hypernova.z_i,
hypernova.i,
running_instance,
incoming_instance,
cyclefold_instance,
)
.unwrap();
}
}