use ark_ff::PrimeField;
|
|
use ark_std::log2;
|
|
|
|
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
|
|
use crate::Error;
|
|
|
|
use super::{r1cs::R1CS, Arith};
|
|
|
|
/// CCS represents the Customizable Constraint Systems structure defined in
|
|
/// the [CCS paper](https://eprint.iacr.org/2023/552)
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct CCS<F: PrimeField> {
|
|
/// m: number of rows in M_i (such that M_i \in F^{m, n})
|
|
pub m: usize,
|
|
/// n = |z|, number of cols in M_i
|
|
pub n: usize,
|
|
/// l = |io|, size of public input/output
|
|
pub l: usize,
|
|
/// t = |M|, number of matrices
|
|
pub t: usize,
|
|
/// q = |c| = |S|, number of multisets
|
|
pub q: usize,
|
|
/// d: max degree in each variable
|
|
pub d: usize,
|
|
/// s = log(m), dimension of x
|
|
pub s: usize,
|
|
/// s_prime = log(n), dimension of y
|
|
pub s_prime: usize,
|
|
|
|
/// vector of matrices
|
|
pub M: Vec<SparseMatrix<F>>,
|
|
/// vector of multisets
|
|
pub S: Vec<Vec<usize>>,
|
|
/// vector of coefficients
|
|
pub c: Vec<F>,
|
|
}
|
|
|
|
impl<F: PrimeField> Arith<F> for CCS<F> {
|
|
/// check that a CCS structure is satisfied by a z vector. Only for testing.
|
|
fn check_relation(&self, z: &[F]) -> Result<(), Error> {
|
|
let mut result = vec![F::zero(); self.m];
|
|
|
|
for i in 0..self.q {
|
|
// extract the needed M_j matrices out of S_i
|
|
let vec_M_j: Vec<&SparseMatrix<F>> = self.S[i].iter().map(|j| &self.M[*j]).collect();
|
|
|
|
// complete the hadamard chain
|
|
let mut hadamard_result = vec![F::one(); self.m];
|
|
for M_j in vec_M_j.into_iter() {
|
|
hadamard_result = hadamard(&hadamard_result, &mat_vec_mul(M_j, z)?)?;
|
|
}
|
|
|
|
// multiply by the coefficient of this step
|
|
let c_M_j_z = vec_scalar_mul(&hadamard_result, &self.c[i]);
|
|
|
|
// add it to the final vector
|
|
result = vec_add(&result, &c_M_j_z)?;
|
|
}
|
|
|
|
// make sure the final vector is all zeroes
|
|
for e in result {
|
|
if !e.is_zero() {
|
|
return Err(Error::NotSatisfied);
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn params_to_bytes(&self) -> Vec<u8> {
|
|
[
|
|
self.l.to_le_bytes(),
|
|
self.m.to_le_bytes(),
|
|
self.n.to_le_bytes(),
|
|
self.t.to_le_bytes(),
|
|
self.q.to_le_bytes(),
|
|
self.d.to_le_bytes(),
|
|
]
|
|
.concat()
|
|
}
|
|
}
|
|
|
|
impl<F: PrimeField> CCS<F> {
|
|
pub fn from_r1cs(r1cs: R1CS<F>) -> Self {
|
|
let m = r1cs.A.n_rows;
|
|
let n = r1cs.A.n_cols;
|
|
CCS {
|
|
m,
|
|
n,
|
|
l: r1cs.l,
|
|
s: log2(m) as usize,
|
|
s_prime: log2(n) as usize,
|
|
t: 3,
|
|
q: 2,
|
|
d: 2,
|
|
|
|
S: vec![vec![0, 1], vec![2]],
|
|
c: vec![F::one(), F::one().neg()],
|
|
M: vec![r1cs.A, r1cs.B, r1cs.C],
|
|
}
|
|
}
|
|
|
|
pub fn to_r1cs(self) -> R1CS<F> {
|
|
R1CS::<F> {
|
|
l: self.l,
|
|
A: self.M[0].clone(),
|
|
B: self.M[1].clone(),
|
|
C: self.M[2].clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z as r1cs_get_test_z};
|
|
use ark_ff::PrimeField;
|
|
use ark_pallas::Fr;
|
|
|
|
pub fn get_test_ccs<F: PrimeField>() -> CCS<F> {
|
|
let r1cs = get_test_r1cs::<F>();
|
|
CCS::<F>::from_r1cs(r1cs)
|
|
}
|
|
pub fn get_test_z<F: PrimeField>(input: usize) -> Vec<F> {
|
|
r1cs_get_test_z(input)
|
|
}
|
|
|
|
/// Test that a basic CCS relation can be satisfied
|
|
#[test]
|
|
fn test_ccs_relation() {
|
|
let ccs = get_test_ccs::<Fr>();
|
|
let z = get_test_z(3);
|
|
|
|
ccs.check_relation(&z).unwrap();
|
|
}
|
|
}
|