You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

136 lines
3.7 KiB

use ark_ff::PrimeField;
use ark_std::log2;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, SparseMatrix};
use crate::Error;
use super::{r1cs::R1CS, Arith};
/// CCS represents the Customizable Constraint Systems structure defined in
/// the [CCS paper](https://eprint.iacr.org/2023/552)
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct CCS<F: PrimeField> {
/// m: number of rows in M_i (such that M_i \in F^{m, n})
pub m: usize,
/// n = |z|, number of cols in M_i
pub n: usize,
/// l = |io|, size of public input/output
pub l: usize,
/// t = |M|, number of matrices
pub t: usize,
/// q = |c| = |S|, number of multisets
pub q: usize,
/// d: max degree in each variable
pub d: usize,
/// s = log(m), dimension of x
pub s: usize,
/// s_prime = log(n), dimension of y
pub s_prime: usize,
/// vector of matrices
pub M: Vec<SparseMatrix<F>>,
/// vector of multisets
pub S: Vec<Vec<usize>>,
/// vector of coefficients
pub c: Vec<F>,
}
impl<F: PrimeField> Arith<F> for CCS<F> {
/// check that a CCS structure is satisfied by a z vector. Only for testing.
fn check_relation(&self, z: &[F]) -> Result<(), Error> {
let mut result = vec![F::zero(); self.m];
for i in 0..self.q {
// extract the needed M_j matrices out of S_i
let vec_M_j: Vec<&SparseMatrix<F>> = self.S[i].iter().map(|j| &self.M[*j]).collect();
// complete the hadamard chain
let mut hadamard_result = vec![F::one(); self.m];
for M_j in vec_M_j.into_iter() {
hadamard_result = hadamard(&hadamard_result, &mat_vec_mul(M_j, z)?)?;
}
// multiply by the coefficient of this step
let c_M_j_z = vec_scalar_mul(&hadamard_result, &self.c[i]);
// add it to the final vector
result = vec_add(&result, &c_M_j_z)?;
}
// make sure the final vector is all zeroes
for e in result {
if !e.is_zero() {
return Err(Error::NotSatisfied);
}
}
Ok(())
}
fn params_to_bytes(&self) -> Vec<u8> {
[
self.l.to_le_bytes(),
self.m.to_le_bytes(),
self.n.to_le_bytes(),
self.t.to_le_bytes(),
self.q.to_le_bytes(),
self.d.to_le_bytes(),
]
.concat()
}
}
impl<F: PrimeField> CCS<F> {
pub fn from_r1cs(r1cs: R1CS<F>) -> Self {
let m = r1cs.A.n_rows;
let n = r1cs.A.n_cols;
CCS {
m,
n,
l: r1cs.l,
s: log2(m) as usize,
s_prime: log2(n) as usize,
t: 3,
q: 2,
d: 2,
S: vec![vec![0, 1], vec![2]],
c: vec![F::one(), F::one().neg()],
M: vec![r1cs.A, r1cs.B, r1cs.C],
}
}
pub fn to_r1cs(self) -> R1CS<F> {
R1CS::<F> {
l: self.l,
A: self.M[0].clone(),
B: self.M[1].clone(),
C: self.M[2].clone(),
}
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::arith::r1cs::tests::{get_test_r1cs, get_test_z as r1cs_get_test_z};
use ark_ff::PrimeField;
use ark_pallas::Fr;
pub fn get_test_ccs<F: PrimeField>() -> CCS<F> {
let r1cs = get_test_r1cs::<F>();
CCS::<F>::from_r1cs(r1cs)
}
pub fn get_test_z<F: PrimeField>(input: usize) -> Vec<F> {
r1cs_get_test_z(input)
}
/// Test that a basic CCS relation can be satisfied
#[test]
fn test_ccs_relation() {
let ccs = get_test_ccs::<Fr>();
let z = get_test_z(3);
ccs.check_relation(&z).unwrap();
}
}