/// This file implements the onchain (Ethereum's EVM) decider.
|
|
use ark_bn254::Bn254;
|
|
use ark_crypto_primitives::sponge::Absorb;
|
|
use ark_ec::{AffineRepr, CurveGroup, Group};
|
|
use ark_ff::{BigInteger, PrimeField};
|
|
use ark_groth16::Groth16;
|
|
use ark_r1cs_std::{groups::GroupOpsBounds, prelude::CurveVar, ToConstraintFieldGadget};
|
|
use ark_snark::SNARK;
|
|
use ark_std::rand::{CryptoRng, RngCore};
|
|
use ark_std::{One, Zero};
|
|
use core::marker::PhantomData;
|
|
|
|
pub use super::decider_eth_circuit::{DeciderEthCircuit, KZGChallengesGadget};
|
|
use super::{nifs::NIFS, CommittedInstance, Nova};
|
|
use crate::commitment::{
|
|
kzg::{Proof as KZGProof, KZG},
|
|
pedersen::Params as PedersenParams,
|
|
CommitmentScheme,
|
|
};
|
|
use crate::folding::circuits::{nonnative::affine::NonNativeAffineVar, CF2};
|
|
use crate::frontend::FCircuit;
|
|
use crate::Error;
|
|
use crate::{Decider as DeciderTrait, FoldingScheme};
|
|
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct Proof<C1, CS1, S>
|
|
where
|
|
C1: CurveGroup,
|
|
CS1: CommitmentScheme<C1, ProverChallenge = C1::ScalarField, Challenge = C1::ScalarField>,
|
|
S: SNARK<C1::ScalarField>,
|
|
{
|
|
snark_proof: S::Proof,
|
|
kzg_proofs: [CS1::Proof; 2],
|
|
// cmT and r are values for the last fold, U_{i+1}=NIFS.V(r, U_i, u_i, cmT), and they are
|
|
// checked in-circuit
|
|
cmT: C1,
|
|
r: C1::ScalarField,
|
|
// the KZG challenges are provided by the prover, but in-circuit they are checked to match
|
|
// the in-circuit computed computed ones.
|
|
kzg_challenges: [C1::ScalarField; 2],
|
|
}
|
|
|
|
/// Onchain Decider, for ethereum use cases
|
|
#[derive(Clone, Debug)]
|
|
pub struct Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS> {
|
|
_c1: PhantomData<C1>,
|
|
_gc1: PhantomData<GC1>,
|
|
_c2: PhantomData<C2>,
|
|
_gc2: PhantomData<GC2>,
|
|
_fc: PhantomData<FC>,
|
|
_cs1: PhantomData<CS1>,
|
|
_cs2: PhantomData<CS2>,
|
|
_s: PhantomData<S>,
|
|
_fs: PhantomData<FS>,
|
|
}
|
|
|
|
impl<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS> DeciderTrait<C1, C2, FC, FS>
|
|
for Decider<C1, GC1, C2, GC2, FC, CS1, CS2, S, FS>
|
|
where
|
|
C1: CurveGroup,
|
|
C2: CurveGroup,
|
|
GC1: CurveVar<C1, CF2<C1>> + ToConstraintFieldGadget<CF2<C1>>,
|
|
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
|
|
FC: FCircuit<C1::ScalarField>,
|
|
// CS1 is a KZG commitment, where challenge is C1::Fr elem
|
|
CS1: CommitmentScheme<
|
|
C1,
|
|
ProverChallenge = C1::ScalarField,
|
|
Challenge = C1::ScalarField,
|
|
Proof = KZGProof<C1>,
|
|
>,
|
|
// enforce that the CS2 is Pedersen commitment scheme, since we're at Ethereum's EVM decider
|
|
CS2: CommitmentScheme<C2, ProverParams = PedersenParams<C2>>,
|
|
S: SNARK<C1::ScalarField>,
|
|
FS: FoldingScheme<C1, C2, FC>,
|
|
<C1 as CurveGroup>::BaseField: PrimeField,
|
|
<C2 as CurveGroup>::BaseField: PrimeField,
|
|
<C1 as Group>::ScalarField: Absorb,
|
|
<C2 as Group>::ScalarField: Absorb,
|
|
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
|
|
for<'b> &'b GC1: GroupOpsBounds<'b, C1, GC1>,
|
|
for<'b> &'b GC2: GroupOpsBounds<'b, C2, GC2>,
|
|
// constrain FS into Nova, since this is a Decider specifically for Nova
|
|
Nova<C1, GC1, C2, GC2, FC, CS1, CS2>: From<FS>,
|
|
crate::folding::nova::ProverParams<C1, C2, CS1, CS2>:
|
|
From<<FS as FoldingScheme<C1, C2, FC>>::ProverParam>,
|
|
crate::folding::nova::VerifierParams<C1, C2, CS1, CS2>:
|
|
From<<FS as FoldingScheme<C1, C2, FC>>::VerifierParam>,
|
|
{
|
|
type PreprocessorParam = (FS::ProverParam, FS::VerifierParam);
|
|
type ProverParam = (S::ProvingKey, CS1::ProverParams);
|
|
type Proof = Proof<C1, CS1, S>;
|
|
/// VerifierParam = (pp_hash, snark::vk, commitment_scheme::vk)
|
|
type VerifierParam = (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams);
|
|
type PublicInput = Vec<C1::ScalarField>;
|
|
type CommittedInstance = CommittedInstance<C1>;
|
|
|
|
fn preprocess(
|
|
mut rng: impl RngCore + CryptoRng,
|
|
prep_param: &Self::PreprocessorParam,
|
|
fs: FS,
|
|
) -> Result<(Self::ProverParam, Self::VerifierParam), Error> {
|
|
let circuit =
|
|
DeciderEthCircuit::<C1, GC1, C2, GC2, CS1, CS2>::from_nova::<FC>(fs.into()).unwrap();
|
|
|
|
// get the Groth16 specific setup for the circuit
|
|
let (g16_pk, g16_vk) = S::circuit_specific_setup(circuit, &mut rng).unwrap();
|
|
|
|
// get the FoldingScheme prover & verifier params from Nova
|
|
#[allow(clippy::type_complexity)]
|
|
let nova_pp:
|
|
<Nova<C1, GC1, C2, GC2, FC, CS1, CS2> as FoldingScheme<C1, C2, FC>>::ProverParam =
|
|
prep_param.0.clone().into()
|
|
;
|
|
#[allow(clippy::type_complexity)]
|
|
let nova_vp:
|
|
<Nova<C1, GC1, C2, GC2, FC, CS1, CS2> as FoldingScheme<C1, C2, FC>>::VerifierParam =
|
|
prep_param.1.clone().into();
|
|
let pp_hash = nova_vp.pp_hash()?;
|
|
|
|
let pp = (g16_pk, nova_pp.cs_pp);
|
|
let vp = (pp_hash, g16_vk, nova_vp.cs_vp);
|
|
Ok((pp, vp))
|
|
}
|
|
|
|
fn prove(
|
|
mut rng: impl RngCore + CryptoRng,
|
|
pp: Self::ProverParam,
|
|
folding_scheme: FS,
|
|
) -> Result<Self::Proof, Error> {
|
|
let (snark_pk, cs_pk): (S::ProvingKey, CS1::ProverParams) = pp;
|
|
|
|
let circuit = DeciderEthCircuit::<C1, GC1, C2, GC2, CS1, CS2>::from_nova::<FC>(
|
|
folding_scheme.into(),
|
|
)?;
|
|
|
|
let snark_proof = S::prove(&snark_pk, circuit.clone(), &mut rng)
|
|
.map_err(|e| Error::Other(e.to_string()))?;
|
|
|
|
let cmT = circuit.cmT.unwrap();
|
|
let r_Fr = circuit.r.unwrap();
|
|
let W_i1 = circuit.W_i1.unwrap();
|
|
|
|
// get the challenges that have been already computed when preparing the circuit inputs in
|
|
// the above `from_nova` call
|
|
let challenge_W = circuit
|
|
.kzg_c_W
|
|
.ok_or(Error::MissingValue("kzg_c_W".to_string()))?;
|
|
let challenge_E = circuit
|
|
.kzg_c_E
|
|
.ok_or(Error::MissingValue("kzg_c_E".to_string()))?;
|
|
|
|
// generate KZG proofs
|
|
let U_cmW_proof = CS1::prove_with_challenge(
|
|
&cs_pk,
|
|
challenge_W,
|
|
&W_i1.W,
|
|
&C1::ScalarField::zero(),
|
|
None,
|
|
)?;
|
|
let U_cmE_proof = CS1::prove_with_challenge(
|
|
&cs_pk,
|
|
challenge_E,
|
|
&W_i1.E,
|
|
&C1::ScalarField::zero(),
|
|
None,
|
|
)?;
|
|
|
|
Ok(Self::Proof {
|
|
snark_proof,
|
|
kzg_proofs: [U_cmW_proof, U_cmE_proof],
|
|
cmT,
|
|
r: r_Fr,
|
|
kzg_challenges: [challenge_W, challenge_E],
|
|
})
|
|
}
|
|
|
|
fn verify(
|
|
vp: Self::VerifierParam,
|
|
i: C1::ScalarField,
|
|
z_0: Vec<C1::ScalarField>,
|
|
z_i: Vec<C1::ScalarField>,
|
|
running_instance: &Self::CommittedInstance,
|
|
incoming_instance: &Self::CommittedInstance,
|
|
proof: &Self::Proof,
|
|
) -> Result<bool, Error> {
|
|
if i <= C1::ScalarField::one() {
|
|
return Err(Error::NotEnoughSteps);
|
|
}
|
|
|
|
let (pp_hash, snark_vk, cs_vk): (C1::ScalarField, S::VerifyingKey, CS1::VerifierParams) =
|
|
vp;
|
|
|
|
// compute U = U_{d+1}= NIFS.V(U_d, u_d, cmT)
|
|
let U = NIFS::<C1, CS1>::verify(proof.r, running_instance, incoming_instance, &proof.cmT);
|
|
|
|
let (cmE_x, cmE_y) = NonNativeAffineVar::inputize(U.cmE)?;
|
|
let (cmW_x, cmW_y) = NonNativeAffineVar::inputize(U.cmW)?;
|
|
let (cmT_x, cmT_y) = NonNativeAffineVar::inputize(proof.cmT)?;
|
|
|
|
let public_input: Vec<C1::ScalarField> = vec![
|
|
vec![pp_hash, i],
|
|
z_0,
|
|
z_i,
|
|
vec![U.u],
|
|
U.x.clone(),
|
|
cmE_x,
|
|
cmE_y,
|
|
cmW_x,
|
|
cmW_y,
|
|
proof.kzg_challenges.to_vec(),
|
|
vec![
|
|
proof.kzg_proofs[0].eval, // eval_W
|
|
proof.kzg_proofs[1].eval, // eval_E
|
|
],
|
|
cmT_x,
|
|
cmT_y,
|
|
vec![proof.r],
|
|
]
|
|
.concat();
|
|
|
|
let snark_v = S::verify(&snark_vk, &public_input, &proof.snark_proof)
|
|
.map_err(|e| Error::Other(e.to_string()))?;
|
|
if !snark_v {
|
|
return Err(Error::SNARKVerificationFail);
|
|
}
|
|
|
|
// we're at the Ethereum EVM case, so the CS1 is KZG commitments
|
|
CS1::verify_with_challenge(
|
|
&cs_vk,
|
|
proof.kzg_challenges[0],
|
|
&U.cmW,
|
|
&proof.kzg_proofs[0],
|
|
)?;
|
|
CS1::verify_with_challenge(
|
|
&cs_vk,
|
|
proof.kzg_challenges[1],
|
|
&U.cmE,
|
|
&proof.kzg_proofs[1],
|
|
)?;
|
|
|
|
Ok(true)
|
|
}
|
|
}
|
|
|
|
/// Prepares solidity calldata for calling the NovaDecider contract
|
|
pub fn prepare_calldata(
|
|
function_signature_check: [u8; 4],
|
|
i: ark_bn254::Fr,
|
|
z_0: Vec<ark_bn254::Fr>,
|
|
z_i: Vec<ark_bn254::Fr>,
|
|
running_instance: &CommittedInstance<ark_bn254::G1Projective>,
|
|
incoming_instance: &CommittedInstance<ark_bn254::G1Projective>,
|
|
proof: Proof<ark_bn254::G1Projective, KZG<'static, Bn254>, Groth16<Bn254>>,
|
|
) -> Result<Vec<u8>, Error> {
|
|
Ok(vec![
|
|
function_signature_check.to_vec(),
|
|
i.into_bigint().to_bytes_be(), // i
|
|
z_0.iter()
|
|
.flat_map(|v| v.into_bigint().to_bytes_be())
|
|
.collect::<Vec<u8>>(), // z_0
|
|
z_i.iter()
|
|
.flat_map(|v| v.into_bigint().to_bytes_be())
|
|
.collect::<Vec<u8>>(), // z_i
|
|
point_to_eth_format(running_instance.cmW.into_affine())?, // U_i_cmW
|
|
point_to_eth_format(running_instance.cmE.into_affine())?, // U_i_cmE
|
|
running_instance.u.into_bigint().to_bytes_be(), // U_i_u
|
|
incoming_instance.u.into_bigint().to_bytes_be(), // u_i_u
|
|
proof.r.into_bigint().to_bytes_be(), // r
|
|
running_instance
|
|
.x
|
|
.iter()
|
|
.flat_map(|v| v.into_bigint().to_bytes_be())
|
|
.collect::<Vec<u8>>(), // U_i_x
|
|
point_to_eth_format(incoming_instance.cmW.into_affine())?, // u_i_cmW
|
|
incoming_instance
|
|
.x
|
|
.iter()
|
|
.flat_map(|v| v.into_bigint().to_bytes_be())
|
|
.collect::<Vec<u8>>(), // u_i_x
|
|
point_to_eth_format(proof.cmT.into_affine())?, // cmT
|
|
point_to_eth_format(proof.snark_proof.a)?, // pA
|
|
point2_to_eth_format(proof.snark_proof.b)?, // pB
|
|
point_to_eth_format(proof.snark_proof.c)?, // pC
|
|
proof.kzg_challenges[0].into_bigint().to_bytes_be(), // challenge_W
|
|
proof.kzg_challenges[1].into_bigint().to_bytes_be(), // challenge_E
|
|
proof.kzg_proofs[0].eval.into_bigint().to_bytes_be(), // eval W
|
|
proof.kzg_proofs[1].eval.into_bigint().to_bytes_be(), // eval E
|
|
point_to_eth_format(proof.kzg_proofs[0].proof.into_affine())?, // W kzg_proof
|
|
point_to_eth_format(proof.kzg_proofs[1].proof.into_affine())?, // E kzg_proof
|
|
]
|
|
.concat())
|
|
}
|
|
|
|
fn point_to_eth_format<C: AffineRepr>(p: C) -> Result<Vec<u8>, Error>
|
|
where
|
|
C::BaseField: PrimeField,
|
|
{
|
|
// the encoding of the additive identity is [0, 0] on the EVM
|
|
let zero_point = (&C::BaseField::zero(), &C::BaseField::zero());
|
|
let (x, y) = p.xy().unwrap_or(zero_point);
|
|
|
|
Ok([x.into_bigint().to_bytes_be(), y.into_bigint().to_bytes_be()].concat())
|
|
}
|
|
fn point2_to_eth_format(p: ark_bn254::G2Affine) -> Result<Vec<u8>, Error> {
|
|
let zero_point = (&ark_bn254::Fq2::zero(), &ark_bn254::Fq2::zero());
|
|
let (x, y) = p.xy().unwrap_or(zero_point);
|
|
|
|
Ok([
|
|
x.c1.into_bigint().to_bytes_be(),
|
|
x.c0.into_bigint().to_bytes_be(),
|
|
y.c1.into_bigint().to_bytes_be(),
|
|
y.c0.into_bigint().to_bytes_be(),
|
|
]
|
|
.concat())
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use ark_bn254::{constraints::GVar, Bn254, Fr, G1Projective as Projective};
|
|
use ark_groth16::Groth16;
|
|
use ark_grumpkin::{constraints::GVar as GVar2, Projective as Projective2};
|
|
use std::time::Instant;
|
|
|
|
use super::*;
|
|
use crate::commitment::kzg::KZG;
|
|
use crate::commitment::pedersen::Pedersen;
|
|
use crate::folding::nova::PreprocessorParam;
|
|
use crate::frontend::tests::CubicFCircuit;
|
|
use crate::transcript::poseidon::poseidon_canonical_config;
|
|
|
|
#[test]
|
|
fn test_decider() {
|
|
// use Nova as FoldingScheme
|
|
type N = Nova<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
CubicFCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<Projective2>,
|
|
>;
|
|
type D = Decider<
|
|
Projective,
|
|
GVar,
|
|
Projective2,
|
|
GVar2,
|
|
CubicFCircuit<Fr>,
|
|
KZG<'static, Bn254>,
|
|
Pedersen<Projective2>,
|
|
Groth16<Bn254>, // here we define the Snark to use in the decider
|
|
N, // here we define the FoldingScheme to use
|
|
>;
|
|
|
|
let mut rng = ark_std::test_rng();
|
|
let poseidon_config = poseidon_canonical_config::<Fr>();
|
|
|
|
let F_circuit = CubicFCircuit::<Fr>::new(()).unwrap();
|
|
let z_0 = vec![Fr::from(3_u32)];
|
|
|
|
let prep_param = PreprocessorParam::new(poseidon_config, F_circuit);
|
|
let nova_params = N::preprocess(&mut rng, &prep_param).unwrap();
|
|
|
|
let start = Instant::now();
|
|
let mut nova = N::init(nova_params.clone(), F_circuit, z_0.clone()).unwrap();
|
|
println!("Nova initialized, {:?}", start.elapsed());
|
|
let start = Instant::now();
|
|
nova.prove_step(&mut rng, vec![]).unwrap();
|
|
println!("prove_step, {:?}", start.elapsed());
|
|
nova.prove_step(&mut rng, vec![]).unwrap(); // do a 2nd step
|
|
|
|
let mut rng = rand::rngs::OsRng;
|
|
|
|
// prepare the Decider prover & verifier params
|
|
let (decider_pp, decider_vp) = D::preprocess(&mut rng, &nova_params, nova.clone()).unwrap();
|
|
|
|
// decider proof generation
|
|
let start = Instant::now();
|
|
let proof = D::prove(rng, decider_pp, nova.clone()).unwrap();
|
|
println!("Decider prove, {:?}", start.elapsed());
|
|
|
|
// decider proof verification
|
|
let start = Instant::now();
|
|
let verified = D::verify(
|
|
decider_vp, nova.i, nova.z_0, nova.z_i, &nova.U_i, &nova.u_i, &proof,
|
|
)
|
|
.unwrap();
|
|
assert!(verified);
|
|
println!("Decider verify, {:?}", start.elapsed());
|
|
}
|
|
}
|