You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

539 lines
20 KiB

use ark_crypto_primitives::sponge::{
constraints::CryptographicSpongeVar,
poseidon::{constraints::PoseidonSpongeVar, PoseidonConfig, PoseidonSponge},
Absorb, CryptographicSponge,
};
use ark_ec::CurveGroup;
use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, EvaluationDomain, GeneralEvaluationDomain};
use ark_r1cs_std::{
alloc::AllocVar,
boolean::Boolean,
eq::EqGadget,
fields::{fp::FpVar, FieldVar},
groups::{CurveVar, GroupOpsBounds},
poly::polynomial::univariate::dense::DensePolynomialVar,
R1CSVar, ToBitsGadget, ToConstraintFieldGadget,
};
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef, SynthesisError};
use ark_std::{fmt::Debug, marker::PhantomData, One, Zero};
use super::{
folding::lagrange_polys,
utils::{all_powers_var, betas_star_var, exponential_powers_var},
CommittedInstance, CommittedInstanceVar, ProtoGalaxyCycleFoldConfig,
};
use crate::{
folding::{
circuits::{
cyclefold::{
CycleFoldChallengeGadget, CycleFoldCommittedInstance,
CycleFoldCommittedInstanceVar, CycleFoldConfig, NIFSFullGadget,
},
nonnative::{affine::NonNativeAffineVar, uint::NonNativeUintVar},
CF1, CF2,
},
traits::CommittedInstanceVarOps,
},
frontend::FCircuit,
transcript::{AbsorbNonNativeGadget, TranscriptVar},
utils::gadgets::VectorGadget,
};
pub struct FoldingGadget {}
impl FoldingGadget {
#[allow(clippy::type_complexity)]
pub fn fold_committed_instance<C: CurveGroup, S: CryptographicSponge>(
transcript: &mut impl TranscriptVar<C::ScalarField, S>,
// running instance
instance: &CommittedInstanceVar<C>,
// incoming instances
vec_instances: &[CommittedInstanceVar<C>],
// polys from P
F_coeffs: Vec<FpVar<C::ScalarField>>,
K_coeffs: Vec<FpVar<C::ScalarField>>,
) -> Result<(CommittedInstanceVar<C>, Vec<FpVar<C::ScalarField>>), SynthesisError> {
let t = instance.betas.len();
// absorb the committed instances
transcript.absorb(instance)?;
transcript.absorb(&vec_instances)?;
let delta = transcript.get_challenge()?;
let deltas = exponential_powers_var(delta, t);
transcript.absorb(&F_coeffs)?;
let alpha = transcript.get_challenge()?;
let alphas = all_powers_var(alpha.clone(), t);
// F(alpha) = e + \sum_t F_i * alpha^i
let mut F_alpha = instance.e.clone();
for (i, F_i) in F_coeffs.iter().skip(1).enumerate() {
F_alpha += F_i * &alphas[i + 1];
}
let betas_star = betas_star_var(&instance.betas, &deltas, &alpha);
let k = vec_instances.len();
let H = GeneralEvaluationDomain::new(k + 1).unwrap();
let L_X = lagrange_polys(H)
.into_iter()
.map(|poly| {
DensePolynomialVar::from_coefficients_vec(
poly.coeffs
.into_iter()
.map(FpVar::constant)
.collect::<Vec<_>>(),
)
})
.collect::<Vec<_>>();
let Z_X = DensePolynomialVar::from_coefficients_vec(
DensePolynomial::from(H.vanishing_polynomial())
.coeffs
.into_iter()
.map(FpVar::constant)
.collect::<Vec<_>>(),
);
let K_X = DensePolynomialVar { coeffs: K_coeffs };
transcript.absorb(&K_X.coeffs)?;
let gamma = transcript.get_challenge()?;
let L_X_evals = L_X
.iter()
.take(k + 1)
.map(|L| L.evaluate(&gamma))
.collect::<Result<Vec<_>, _>>()?;
let e_star = F_alpha * &L_X_evals[0] + Z_X.evaluate(&gamma)? * K_X.evaluate(&gamma)?;
let mut x_star = instance.x.mul_scalar(&L_X_evals[0])?;
for i in 0..k {
x_star = x_star.add(&vec_instances[i].x.mul_scalar(&L_X_evals[i + 1])?)?;
}
// return the folded instance
Ok((
CommittedInstanceVar {
betas: betas_star,
// phi will be computed in CycleFold
phi: NonNativeAffineVar::new_constant(ConstraintSystemRef::None, C::zero())?,
e: e_star,
x: x_star,
},
L_X_evals,
))
}
}
pub struct AugmentationGadget;
impl AugmentationGadget {
#[allow(clippy::type_complexity)]
pub fn prepare_and_fold_primary<C: CurveGroup, S: CryptographicSponge>(
transcript: &mut impl TranscriptVar<CF1<C>, S>,
U: CommittedInstanceVar<C>,
u_phis: Vec<NonNativeAffineVar<C>>,
u_xs: Vec<Vec<FpVar<CF1<C>>>>,
new_U_phi: NonNativeAffineVar<C>,
F_coeffs: Vec<FpVar<CF1<C>>>,
K_coeffs: Vec<FpVar<CF1<C>>>,
) -> Result<(CommittedInstanceVar<C>, Vec<FpVar<CF1<C>>>), SynthesisError> {
assert_eq!(u_phis.len(), u_xs.len());
// Prepare the incoming instances.
// For each instance `u`, we have `u.betas = []`, `u.e = 0`.
let us = u_phis
.into_iter()
.zip(u_xs)
.map(|(phi, x)| CommittedInstanceVar {
phi,
betas: vec![],
e: FpVar::zero(),
x,
})
.collect::<Vec<_>>();
// Fold the incoming instances `us` into the running instance `U`.
let (mut U, L_X_evals) =
FoldingGadget::fold_committed_instance(transcript, &U, &us, F_coeffs, K_coeffs)?;
// Notice that FoldingGadget::fold_committed_instance does not fold phi.
// We set `U.phi` to unconstrained witnesses `U_phi` here, whose
// correctness will be checked on the other curve.
U.phi = new_U_phi;
Ok((U, L_X_evals))
}
pub fn prepare_and_fold_cyclefold<
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
S: CryptographicSponge,
>(
transcript: &mut PoseidonSpongeVar<CF1<C1>>,
pp_hash: FpVar<CF1<C1>>,
mut cf_U: CycleFoldCommittedInstanceVar<C2, GC2>,
cf_u_cmWs: Vec<GC2>,
cf_u_xs: Vec<Vec<NonNativeUintVar<CF1<C1>>>>,
cf_cmTs: Vec<GC2>,
) -> Result<CycleFoldCommittedInstanceVar<C2, GC2>, SynthesisError>
where
C2::BaseField: PrimeField + Absorb,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
assert_eq!(cf_u_cmWs.len(), cf_u_xs.len());
assert_eq!(cf_u_xs.len(), cf_cmTs.len());
// Fold the incoming CycleFold instances into the running CycleFold
// instance in a iterative way, since `NIFSFullGadget` only supports
// folding one incoming instance at a time.
for ((cmW, x), cmT) in cf_u_cmWs.into_iter().zip(cf_u_xs).zip(cf_cmTs) {
// Prepare the incoming CycleFold instance `cf_u` for the current
// iteration.
// For each CycleFold instance `cf_u`, we have `cf_u.cmE = 0`, and
// `cf_u.u = 1`.
let cf_u = CycleFoldCommittedInstanceVar {
cmE: GC2::zero(),
u: NonNativeUintVar::new_constant(ConstraintSystemRef::None, C1::BaseField::one())?,
cmW,
x,
};
let cf_r_bits = CycleFoldChallengeGadget::get_challenge_gadget(
transcript,
pp_hash.clone(),
cf_U.to_native_sponge_field_elements()?,
cf_u.clone(),
cmT.clone(),
)?;
// Fold the current incoming CycleFold instance `cf_u` into the
// running CycleFold instance `cf_U`.
cf_U = NIFSFullGadget::fold_committed_instance(cf_r_bits, cmT, cf_U, cf_u)?;
}
Ok(cf_U)
}
}
/// `AugmentedFCircuit` enhances the original step function `F`, so that it can
/// be used in recursive arguments such as IVC.
///
/// The method for converting `F` to `AugmentedFCircuit` (`F'`) is defined in
/// [Nova](https://eprint.iacr.org/2021/370.pdf), where `AugmentedFCircuit` not
/// only invokes `F`, but also adds additional constraints for verifying the
/// correct folding of primary instances (i.e., the instances over `C1`).
/// In the paper, the primary instances are Nova's `CommittedInstance`, but we
/// extend this method to support using ProtoGalaxy's `CommittedInstance` as
/// primary instances.
///
/// Furthermore, to reduce circuit size over `C2`, we implement the constraints
/// defined in [CycleFold](https://eprint.iacr.org/2023/1192.pdf). These extra
/// constraints verify the correct folding of CycleFold instances.
#[derive(Debug, Clone)]
pub struct AugmentedFCircuit<
C1: CurveGroup,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>>,
FC: FCircuit<CF1<C1>>,
> {
pub(super) _gc2: PhantomData<GC2>,
pub(super) poseidon_config: PoseidonConfig<CF1<C1>>,
pub(super) pp_hash: CF1<C1>,
pub(super) i: CF1<C1>,
pub(super) i_usize: usize,
pub(super) z_0: Vec<CF1<C1>>,
pub(super) z_i: Vec<CF1<C1>>,
pub(super) external_inputs: Vec<CF1<C1>>,
pub(super) F: FC, // F circuit
pub(super) u_i_phi: C1,
pub(super) U_i: CommittedInstance<C1>,
pub(super) U_i1_phi: C1,
pub(super) F_coeffs: Vec<CF1<C1>>,
pub(super) K_coeffs: Vec<CF1<C1>>,
pub(super) x: Option<CF1<C1>>, // public input (u_{i+1}.x[0])
pub(super) phi_stars: Vec<C1>,
pub(super) cf1_u_i_cmW: C2, // input
pub(super) cf2_u_i_cmW: C2, // input
pub(super) cf_U_i: CycleFoldCommittedInstance<C2>, // input
pub(super) cf1_cmT: C2,
pub(super) cf2_cmT: C2,
pub(super) cf_x: Option<CF1<C1>>, // public input (u_{i+1}.x[1])
}
impl<C1: CurveGroup, C2: CurveGroup, GC2: CurveVar<C2, CF2<C2>>, FC: FCircuit<CF1<C1>>>
AugmentedFCircuit<C1, C2, GC2, FC>
where
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
pub fn empty(
poseidon_config: &PoseidonConfig<CF1<C1>>,
F_circuit: FC,
t: usize,
d: usize,
k: usize,
) -> Self {
let u_dummy = CommittedInstance::dummy_running(2, t);
let cf_u_dummy =
CycleFoldCommittedInstance::dummy(ProtoGalaxyCycleFoldConfig::<C1>::IO_LEN);
Self {
_gc2: PhantomData,
poseidon_config: poseidon_config.clone(),
pp_hash: CF1::<C1>::zero(),
i: CF1::<C1>::zero(),
i_usize: 0,
z_0: vec![CF1::<C1>::zero(); F_circuit.state_len()],
z_i: vec![CF1::<C1>::zero(); F_circuit.state_len()],
external_inputs: vec![CF1::<C1>::zero(); F_circuit.external_inputs_len()],
u_i_phi: C1::zero(),
U_i: u_dummy,
U_i1_phi: C1::zero(),
F_coeffs: vec![CF1::<C1>::zero(); t],
K_coeffs: vec![CF1::<C1>::zero(); d * k + 1],
phi_stars: vec![C1::zero(); k],
F: F_circuit,
x: None,
// cyclefold values
cf1_u_i_cmW: C2::zero(),
cf2_u_i_cmW: C2::zero(),
cf_U_i: cf_u_dummy,
cf1_cmT: C2::zero(),
cf2_cmT: C2::zero(),
cf_x: None,
}
}
}
impl<C1, C2, GC2, FC> ConstraintSynthesizer<CF1<C1>> for AugmentedFCircuit<C1, C2, GC2, FC>
where
C1: CurveGroup<BaseField = C2::ScalarField, ScalarField = C2::BaseField>,
C2: CurveGroup,
GC2: CurveVar<C2, CF2<C2>> + ToConstraintFieldGadget<CF2<C2>>,
FC: FCircuit<CF1<C1>>,
C2::BaseField: PrimeField + Absorb,
for<'a> &'a GC2: GroupOpsBounds<'a, C2, GC2>,
{
fn generate_constraints(self, cs: ConstraintSystemRef<CF1<C1>>) -> Result<(), SynthesisError> {
let pp_hash = FpVar::<CF1<C1>>::new_witness(cs.clone(), || Ok(self.pp_hash))?;
let i = FpVar::<CF1<C1>>::new_witness(cs.clone(), || Ok(self.i))?;
let z_0 = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || Ok(self.z_0))?;
let z_i = Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || Ok(self.z_i))?;
let external_inputs =
Vec::<FpVar<CF1<C1>>>::new_witness(cs.clone(), || Ok(self.external_inputs))?;
let u_dummy = CommittedInstance::<C1>::dummy_running(2, self.U_i.betas.len());
let U_i = CommittedInstanceVar::<C1>::new_witness(cs.clone(), || Ok(self.U_i))?;
let u_i_phi = NonNativeAffineVar::new_witness(cs.clone(), || Ok(self.u_i_phi))?;
let U_i1_phi = NonNativeAffineVar::new_witness(cs.clone(), || Ok(self.U_i1_phi))?;
let phi_stars =
Vec::<NonNativeAffineVar<C1>>::new_witness(cs.clone(), || Ok(self.phi_stars))?;
let cf_u_dummy =
CycleFoldCommittedInstance::dummy(ProtoGalaxyCycleFoldConfig::<C1>::IO_LEN);
let cf_U_i =
CycleFoldCommittedInstanceVar::<C2, GC2>::new_witness(cs.clone(), || Ok(self.cf_U_i))?;
let cf1_cmT = GC2::new_witness(cs.clone(), || Ok(self.cf1_cmT))?;
let cf2_cmT = GC2::new_witness(cs.clone(), || Ok(self.cf2_cmT))?;
let F_coeffs = Vec::new_witness(cs.clone(), || Ok(self.F_coeffs))?;
let K_coeffs = Vec::new_witness(cs.clone(), || Ok(self.K_coeffs))?;
// `sponge` is for digest computation.
let sponge = PoseidonSpongeVar::<C1::ScalarField>::new(cs.clone(), &self.poseidon_config);
// `transcript` is for challenge generation.
let mut transcript = sponge.clone();
let is_basecase = i.is_zero()?;
// Primary Part
// P.1. Compute u_i.x
// u_i.x[0] = H(i, z_0, z_i, U_i)
let (u_i_x, _) = U_i.clone().hash(&sponge, &pp_hash, &i, &z_0, &z_i)?;
// u_i.x[1] = H(cf_U_i)
let (cf_u_i_x, _) = cf_U_i.clone().hash(&sponge, pp_hash.clone())?;
// P.2. Prepare incoming primary instances
// P.3. Fold incoming primary instances into the running instance
let (U_i1, r) = AugmentationGadget::prepare_and_fold_primary(
&mut transcript,
U_i.clone(),
vec![u_i_phi.clone()],
vec![vec![u_i_x, cf_u_i_x]],
U_i1_phi,
F_coeffs,
K_coeffs,
)?;
// P.4.a compute and check the first output of F'
// get z_{i+1} from the F circuit
let z_i1 =
self.F
.generate_step_constraints(cs.clone(), self.i_usize, z_i, external_inputs)?;
// Base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{\bot})
// Non-base case: u_{i+1}.x[0] == H((i+1, z_0, z_{i+1}, U_{i+1})
let (u_i1_x, _) = U_i1.clone().hash(
&sponge,
&pp_hash,
&(i + FpVar::<CF1<C1>>::one()),
&z_0,
&z_i1,
)?;
let (u_i1_x_base, _) = CommittedInstanceVar::new_constant(cs.clone(), u_dummy)?.hash(
&sponge,
&pp_hash,
&FpVar::<CF1<C1>>::one(),
&z_0,
&z_i1,
)?;
let x = FpVar::new_input(cs.clone(), || Ok(self.x.unwrap_or(u_i1_x_base.value()?)))?;
x.enforce_equal(&is_basecase.select(&u_i1_x_base, &u_i1_x)?)?;
// CycleFold part
// C.1. Compute cf1_u_i.x and cf2_u_i.x
let mut r0_bits = r[0].to_bits_le()?;
let mut r1_bits = r[1].to_bits_le()?;
r0_bits.resize(C1::ScalarField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
r1_bits.resize(C1::ScalarField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
let cf1_x = [
r0_bits
.chunks(C1::BaseField::MODULUS_BIT_SIZE as usize - 1)
.map(|bits| {
let mut bits = bits.to_vec();
bits.resize(C1::BaseField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
NonNativeUintVar::from(&bits)
})
.collect::<Vec<_>>(),
vec![
NonNativeUintVar::new_constant(cs.clone(), C1::BaseField::zero())?,
NonNativeUintVar::new_constant(cs.clone(), C1::BaseField::zero())?,
U_i.phi.x.clone(),
U_i.phi.y.clone(),
phi_stars[0].x.clone(),
phi_stars[0].y.clone(),
],
]
.concat();
let cf2_x = [
r1_bits
.chunks(C1::BaseField::MODULUS_BIT_SIZE as usize - 1)
.map(|bits| {
let mut bits = bits.to_vec();
bits.resize(C1::BaseField::MODULUS_BIT_SIZE as usize, Boolean::FALSE);
NonNativeUintVar::from(&bits)
})
.collect::<Vec<_>>(),
vec![
phi_stars[0].x.clone(),
phi_stars[0].y.clone(),
u_i_phi.x.clone(),
u_i_phi.y.clone(),
U_i1.phi.x.clone(),
U_i1.phi.y.clone(),
],
]
.concat();
// C.2. Prepare incoming CycleFold instances
// C.3. Fold incoming CycleFold instances into the running instance
let cf_U_i1 =
AugmentationGadget::prepare_and_fold_cyclefold::<C1, C2, GC2, PoseidonSponge<CF1<C1>>>(
&mut transcript,
pp_hash.clone(),
cf_U_i,
vec![
GC2::new_witness(cs.clone(), || Ok(self.cf1_u_i_cmW))?,
GC2::new_witness(cs.clone(), || Ok(self.cf2_u_i_cmW))?,
],
vec![cf1_x, cf2_x],
vec![cf1_cmT, cf2_cmT],
)?;
// Back to Primary Part
// P.4.b compute and check the second output of F'
// Base case: u_{i+1}.x[1] == H(cf_U_{\bot})
// Non-base case: u_{i+1}.x[1] == H(cf_U_{i+1})
let (cf_u_i1_x, _) = cf_U_i1.clone().hash(&sponge, pp_hash.clone())?;
let (cf_u_i1_x_base, _) =
CycleFoldCommittedInstanceVar::<C2, GC2>::new_constant(cs.clone(), cf_u_dummy)?
.hash(&sponge, pp_hash.clone())?;
let cf_x = FpVar::new_input(cs.clone(), || {
Ok(self.cf_x.unwrap_or(cf_u_i1_x_base.value()?))
})?;
cf_x.enforce_equal(&is_basecase.select(&cf_u_i1_x_base, &cf_u_i1_x)?)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::error::Error;
use super::*;
use crate::{
arith::r1cs::tests::get_test_r1cs,
folding::protogalaxy::folding::{tests::prepare_inputs, Folding},
transcript::poseidon::poseidon_canonical_config,
};
use ark_bn254::{Fr, G1Projective as Projective};
use ark_relations::r1cs::ConstraintSystem;
#[test]
fn test_folding_gadget() -> Result<(), Box<dyn Error>> {
let k = 7;
let (witness, instance, witnesses, instances) = prepare_inputs(k);
let r1cs = get_test_r1cs::<Fr>();
// init Prover & Verifier's transcript
let poseidon_config = poseidon_canonical_config::<Fr>();
let mut transcript_p = PoseidonSponge::new(&poseidon_config);
let mut transcript_v = PoseidonSponge::new(&poseidon_config);
let (_, _, F_coeffs, K_coeffs, _, _) = Folding::<Projective>::prove(
&mut transcript_p,
&r1cs,
&instance,
&witness,
&instances,
&witnesses,
)?;
let folded_instance = Folding::<Projective>::verify(
&mut transcript_v,
&instance,
&instances,
F_coeffs.clone(),
K_coeffs.clone(),
)?;
let cs = ConstraintSystem::new_ref();
let mut transcript_var = PoseidonSpongeVar::new(cs.clone(), &poseidon_config);
let instance_var = CommittedInstanceVar::new_witness(cs.clone(), || Ok(instance))?;
let instances_var = Vec::new_witness(cs.clone(), || Ok(instances))?;
let F_coeffs_var = Vec::new_witness(cs.clone(), || Ok(F_coeffs))?;
let K_coeffs_var = Vec::new_witness(cs.clone(), || Ok(K_coeffs))?;
let (folded_instance_var, _) = FoldingGadget::fold_committed_instance(
&mut transcript_var,
&instance_var,
&instances_var,
F_coeffs_var,
K_coeffs_var,
)?;
assert_eq!(folded_instance.betas, folded_instance_var.betas.value()?);
assert_eq!(folded_instance.e, folded_instance_var.e.value()?);
assert_eq!(folded_instance.x, folded_instance_var.x.value()?);
assert!(cs.is_satisfied()?);
Ok(())
}
}