You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

488 lines
17 KiB

use ark_crypto_primitives::sponge::Absorb;
use ark_ec::{CurveGroup, Group};
use ark_std::Zero;
use std::marker::PhantomData;
use super::{CommittedInstance, Witness};
use crate::arith::r1cs::R1CS;
use crate::commitment::CommitmentScheme;
use crate::folding::circuits::cyclefold::{CycleFoldCommittedInstance, CycleFoldWitness};
use crate::transcript::Transcript;
use crate::utils::vec::{hadamard, mat_vec_mul, vec_add, vec_scalar_mul, vec_sub};
use crate::Error;
/// Implements the Non-Interactive Folding Scheme described in section 4 of
/// [Nova](https://eprint.iacr.org/2021/370.pdf)
/// `H` specifies whether the NIFS will use a blinding factor
pub struct NIFS<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool = false> {
_c: PhantomData<C>,
_cp: PhantomData<CS>,
}
impl<C: CurveGroup, CS: CommitmentScheme<C, H>, const H: bool> NIFS<C, CS, H>
where
<C as Group>::ScalarField: Absorb,
{
// compute_T: compute cross-terms T
pub fn compute_T(
r1cs: &R1CS<C::ScalarField>,
u1: C::ScalarField,
u2: C::ScalarField,
z1: &[C::ScalarField],
z2: &[C::ScalarField],
) -> Result<Vec<C::ScalarField>, Error> {
let (A, B, C) = (r1cs.A.clone(), r1cs.B.clone(), r1cs.C.clone());
// this is parallelizable (for the future)
let Az1 = mat_vec_mul(&A, z1)?;
let Bz1 = mat_vec_mul(&B, z1)?;
let Cz1 = mat_vec_mul(&C, z1)?;
let Az2 = mat_vec_mul(&A, z2)?;
let Bz2 = mat_vec_mul(&B, z2)?;
let Cz2 = mat_vec_mul(&C, z2)?;
let Az1_Bz2 = hadamard(&Az1, &Bz2)?;
let Az2_Bz1 = hadamard(&Az2, &Bz1)?;
let u1Cz2 = vec_scalar_mul(&Cz2, &u1);
let u2Cz1 = vec_scalar_mul(&Cz1, &u2);
vec_sub(&vec_sub(&vec_add(&Az1_Bz2, &Az2_Bz1)?, &u1Cz2)?, &u2Cz1)
}
pub fn fold_witness(
r: C::ScalarField,
w1: &Witness<C>,
w2: &Witness<C>,
T: &[C::ScalarField],
rT: C::ScalarField,
) -> Result<Witness<C>, Error> {
let r2 = r * r;
let E: Vec<C::ScalarField> = vec_add(
&vec_add(&w1.E, &vec_scalar_mul(T, &r))?,
&vec_scalar_mul(&w2.E, &r2),
)?;
let rE = w1.rE + r * rT + r2 * w2.rE;
let W: Vec<C::ScalarField> = w1.W.iter().zip(&w2.W).map(|(a, b)| *a + (r * b)).collect();
let rW = w1.rW + r * w2.rW;
Ok(Witness::<C> { E, rE, W, rW })
}
pub fn fold_committed_instance(
r: C::ScalarField,
ci1: &CommittedInstance<C>, // U_i
ci2: &CommittedInstance<C>, // u_i
cmT: &C,
) -> CommittedInstance<C> {
let r2 = r * r;
let cmE = ci1.cmE + cmT.mul(r) + ci2.cmE.mul(r2);
let u = ci1.u + r * ci2.u;
let cmW = ci1.cmW + ci2.cmW.mul(r);
let x = ci1
.x
.iter()
.zip(&ci2.x)
.map(|(a, b)| *a + (r * b))
.collect::<Vec<C::ScalarField>>();
CommittedInstance::<C> { cmE, u, cmW, x }
}
/// NIFS.P is the consecutive combination of compute_cmT with fold_instances
/// compute_cmT is part of the NIFS.P logic
pub fn compute_cmT(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>,
w1: &Witness<C>,
ci1: &CommittedInstance<C>,
w2: &Witness<C>,
ci2: &CommittedInstance<C>,
) -> Result<(Vec<C::ScalarField>, C), Error> {
let z1: Vec<C::ScalarField> = [vec![ci1.u], ci1.x.to_vec(), w1.W.to_vec()].concat();
let z2: Vec<C::ScalarField> = [vec![ci2.u], ci2.x.to_vec(), w2.W.to_vec()].concat();
// compute cross terms
let T = Self::compute_T(r1cs, ci1.u, ci2.u, &z1, &z2)?;
// use r_T=0 since we don't need hiding property for cm(T)
let cmT = CS::commit(cs_prover_params, &T, &C::ScalarField::zero())?;
Ok((T, cmT))
}
pub fn compute_cyclefold_cmT(
cs_prover_params: &CS::ProverParams,
r1cs: &R1CS<C::ScalarField>, // R1CS over C2.Fr=C1.Fq (here C=C2)
w1: &CycleFoldWitness<C>,
ci1: &CycleFoldCommittedInstance<C>,
w2: &CycleFoldWitness<C>,
ci2: &CycleFoldCommittedInstance<C>,
) -> Result<(Vec<C::ScalarField>, C), Error>
where
<C as ark_ec::CurveGroup>::BaseField: ark_ff::PrimeField,
{
let z1: Vec<C::ScalarField> = [vec![ci1.u], ci1.x.to_vec(), w1.W.to_vec()].concat();
let z2: Vec<C::ScalarField> = [vec![ci2.u], ci2.x.to_vec(), w2.W.to_vec()].concat();
// compute cross terms
let T = Self::compute_T(r1cs, ci1.u, ci2.u, &z1, &z2)?;
// use r_T=0 since we don't need hiding property for cm(T)
let cmT = CS::commit(cs_prover_params, &T, &C::ScalarField::zero())?;
Ok((T, cmT))
}
/// fold_instances is part of the NIFS.P logic described in
/// [Nova](https://eprint.iacr.org/2021/370.pdf)'s section 4. It returns the folded Committed
/// Instances and the Witness.
pub fn fold_instances(
r: C::ScalarField,
w1: &Witness<C>,
ci1: &CommittedInstance<C>,
w2: &Witness<C>,
ci2: &CommittedInstance<C>,
T: &[C::ScalarField],
cmT: C,
) -> Result<(Witness<C>, CommittedInstance<C>), Error> {
// fold witness
// use r_T=0 since we don't need hiding property for cm(T)
let w3 = NIFS::<C, CS, H>::fold_witness(r, w1, w2, T, C::ScalarField::zero())?;
// fold committed instances
let ci3 = NIFS::<C, CS, H>::fold_committed_instance(r, ci1, ci2, &cmT);
Ok((w3, ci3))
}
/// verify implements NIFS.V logic described in [Nova](https://eprint.iacr.org/2021/370.pdf)'s
/// section 4. It returns the folded Committed Instance
pub fn verify(
// r comes from the transcript, and is a n-bit (N_BITS_CHALLENGE) element
r: C::ScalarField,
ci1: &CommittedInstance<C>,
ci2: &CommittedInstance<C>,
cmT: &C,
) -> CommittedInstance<C> {
NIFS::<C, CS, H>::fold_committed_instance(r, ci1, ci2, cmT)
}
/// Verify committed folded instance (ci) relations. Notice that this method does not open the
/// commitments, but just checks that the given committed instances (ci1, ci2) when folded
/// result in the folded committed instance (ci3) values.
pub fn verify_folded_instance(
r: C::ScalarField,
ci1: &CommittedInstance<C>,
ci2: &CommittedInstance<C>,
ci3: &CommittedInstance<C>,
cmT: &C,
) -> Result<(), Error> {
let expected = Self::fold_committed_instance(r, ci1, ci2, cmT);
if ci3.cmE != expected.cmE
|| ci3.u != expected.u
|| ci3.cmW != expected.cmW
|| ci3.x != expected.x
{
return Err(Error::NotSatisfied);
}
Ok(())
}
pub fn prove_commitments(
tr: &mut impl Transcript<C::ScalarField>,
cs_prover_params: &CS::ProverParams,
w: &Witness<C>,
ci: &CommittedInstance<C>,
T: Vec<C::ScalarField>,
cmT: &C,
) -> Result<[CS::Proof; 3], Error> {
let cmE_proof = CS::prove(cs_prover_params, tr, &ci.cmE, &w.E, &w.rE, None)?;
let cmW_proof = CS::prove(cs_prover_params, tr, &ci.cmW, &w.W, &w.rW, None)?;
let cmT_proof = CS::prove(cs_prover_params, tr, cmT, &T, &C::ScalarField::zero(), None)?; // cm(T) is committed with rT=0
Ok([cmE_proof, cmW_proof, cmT_proof])
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use ark_crypto_primitives::sponge::{
poseidon::{PoseidonConfig, PoseidonSponge},
CryptographicSponge,
};
use ark_ff::{BigInteger, PrimeField};
use ark_pallas::{Fr, Projective};
use ark_std::{ops::Mul, test_rng, UniformRand};
use crate::commitment::pedersen::{Params as PedersenParams, Pedersen};
use crate::folding::nova::circuits::ChallengeGadget;
use crate::transcript::poseidon::poseidon_canonical_config;
use crate::{
arith::{
r1cs::tests::{get_test_r1cs, get_test_z},
Arith,
},
folding::traits::Dummy,
};
#[allow(clippy::type_complexity)]
pub(crate) fn prepare_simple_fold_inputs<C>() -> (
PedersenParams<C>,
PoseidonConfig<C::ScalarField>,
R1CS<C::ScalarField>,
Witness<C>, // w1
CommittedInstance<C>, // ci1
Witness<C>, // w2
CommittedInstance<C>, // ci2
Witness<C>, // w3
CommittedInstance<C>, // ci3
Vec<C::ScalarField>, // T
C, // cmT
Vec<bool>, // r_bits
C::ScalarField, // r_Fr
)
where
C: CurveGroup,
<C as CurveGroup>::BaseField: PrimeField,
C::ScalarField: Absorb,
{
let r1cs = get_test_r1cs();
let z1 = get_test_z(3);
let z2 = get_test_z(4);
let (w1, x1) = r1cs.split_z(&z1);
let (w2, x2) = r1cs.split_z(&z2);
let w1 = Witness::<C>::new::<false>(w1.clone(), r1cs.A.n_rows, test_rng());
let w2 = Witness::<C>::new::<false>(w2.clone(), r1cs.A.n_rows, test_rng());
let mut rng = ark_std::test_rng();
let (pedersen_params, _) = Pedersen::<C>::setup(&mut rng, r1cs.A.n_cols).unwrap();
// compute committed instances
let ci1 = w1
.commit::<Pedersen<C>, false>(&pedersen_params, x1.clone())
.unwrap();
let ci2 = w2
.commit::<Pedersen<C>, false>(&pedersen_params, x2.clone())
.unwrap();
// NIFS.P
let (T, cmT) =
NIFS::<C, Pedersen<C>>::compute_cmT(&pedersen_params, &r1cs, &w1, &ci1, &w2, &ci2)
.unwrap();
let poseidon_config = poseidon_canonical_config::<C::ScalarField>();
let mut transcript = PoseidonSponge::<C::ScalarField>::new(&poseidon_config);
let pp_hash = C::ScalarField::from(42u32); // only for test
let r_bits = ChallengeGadget::<C>::get_challenge_native(
&mut transcript,
pp_hash,
ci1.clone(),
ci2.clone(),
cmT,
);
let r_Fr = C::ScalarField::from_bigint(BigInteger::from_bits_le(&r_bits)).unwrap();
let (w3, ci3) =
NIFS::<C, Pedersen<C>>::fold_instances(r_Fr, &w1, &ci1, &w2, &ci2, &T, cmT).unwrap();
(
pedersen_params,
poseidon_config,
r1cs,
w1,
ci1,
w2,
ci2,
w3,
ci3,
T,
cmT,
r_bits,
r_Fr,
)
}
// fold 2 dummy instances and check that the folded instance holds the relaxed R1CS relation
#[test]
fn test_nifs_fold_dummy() {
let r1cs = get_test_r1cs::<Fr>();
let z1 = get_test_z(3);
let (_, x1) = r1cs.split_z(&z1);
let mut rng = ark_std::test_rng();
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, r1cs.A.n_cols).unwrap();
// dummy instance, witness and public inputs zeroes
let w_dummy = Witness::<Projective>::dummy(&r1cs);
let mut u_dummy = w_dummy
.commit::<Pedersen<Projective>, false>(&pedersen_params, vec![Fr::zero(); x1.len()])
.unwrap();
u_dummy.u = Fr::zero();
let w_i = w_dummy.clone();
let u_i = u_dummy.clone();
let W_i = w_dummy.clone();
let U_i = u_dummy.clone();
r1cs.check_relation(&w_i, &u_i).unwrap();
r1cs.check_relation(&W_i, &U_i).unwrap();
let r_Fr = Fr::from(3_u32);
let (T, cmT) = NIFS::<Projective, Pedersen<Projective>>::compute_cmT(
&pedersen_params,
&r1cs,
&w_i,
&u_i,
&W_i,
&U_i,
)
.unwrap();
let (W_i1, U_i1) = NIFS::<Projective, Pedersen<Projective>>::fold_instances(
r_Fr, &w_i, &u_i, &W_i, &U_i, &T, cmT,
)
.unwrap();
r1cs.check_relation(&W_i1, &U_i1).unwrap();
}
// fold 2 instances into one
#[test]
fn test_nifs_one_fold() {
let (pedersen_params, poseidon_config, r1cs, w1, ci1, w2, ci2, w3, ci3, T, cmT, _, r) =
prepare_simple_fold_inputs();
// NIFS.V
let ci3_v = NIFS::<Projective, Pedersen<Projective>>::verify(r, &ci1, &ci2, &cmT);
assert_eq!(ci3_v, ci3);
// check that relations hold for the 2 inputted instances and the folded one
r1cs.check_relation(&w1, &ci1).unwrap();
r1cs.check_relation(&w2, &ci2).unwrap();
r1cs.check_relation(&w3, &ci3).unwrap();
// check that folded commitments from folded instance (ci) are equal to folding the
// use folded rE, rW to commit w3
let ci3_expected = w3
.commit::<Pedersen<Projective>, false>(&pedersen_params, ci3.x.clone())
.unwrap();
assert_eq!(ci3_expected.cmE, ci3.cmE);
assert_eq!(ci3_expected.cmW, ci3.cmW);
// next equalities should hold since we started from two cmE of zero-vector E's
assert_eq!(ci3.cmE, cmT.mul(r));
assert_eq!(w3.E, vec_scalar_mul(&T, &r));
// NIFS.Verify_Folded_Instance:
NIFS::<Projective, Pedersen<Projective>>::verify_folded_instance(r, &ci1, &ci2, &ci3, &cmT)
.unwrap();
// init Prover's transcript
let mut transcript_p = PoseidonSponge::<Fr>::new(&poseidon_config);
// init Verifier's transcript
let mut transcript_v = PoseidonSponge::<Fr>::new(&poseidon_config);
// prove the ci3.cmE, ci3.cmW, cmT commitments
let cm_proofs = NIFS::<Projective, Pedersen<Projective>>::prove_commitments(
&mut transcript_p,
&pedersen_params,
&w3,
&ci3,
T,
&cmT,
)
.unwrap();
// verify the ci3.cmE, ci3.cmW, cmT commitments
assert_eq!(cm_proofs.len(), 3);
Pedersen::<Projective>::verify(
&pedersen_params,
&mut transcript_v,
&ci3.cmE,
&cm_proofs[0].clone(),
)
.unwrap();
Pedersen::<Projective>::verify(
&pedersen_params,
&mut transcript_v,
&ci3.cmW,
&cm_proofs[1].clone(),
)
.unwrap();
Pedersen::<Projective>::verify(
&pedersen_params,
&mut transcript_v,
&cmT,
&cm_proofs[2].clone(),
)
.unwrap();
}
#[test]
fn test_nifs_fold_loop() {
let r1cs = get_test_r1cs();
let z = get_test_z(3);
let (w, x) = r1cs.split_z(&z);
let mut rng = ark_std::test_rng();
let (pedersen_params, _) = Pedersen::<Projective>::setup(&mut rng, r1cs.A.n_cols).unwrap();
// prepare the running instance
let mut running_instance_w =
Witness::<Projective>::new::<false>(w.clone(), r1cs.A.n_rows, test_rng());
let mut running_committed_instance = running_instance_w
.commit::<Pedersen<Projective>, false>(&pedersen_params, x)
.unwrap();
r1cs.check_relation(&running_instance_w, &running_committed_instance)
.unwrap();
let num_iters = 10;
for i in 0..num_iters {
// prepare the incoming instance
let incoming_instance_z = get_test_z(i + 4);
let (w, x) = r1cs.split_z(&incoming_instance_z);
let incoming_instance_w =
Witness::<Projective>::new::<false>(w.clone(), r1cs.A.n_rows, test_rng());
let incoming_committed_instance = incoming_instance_w
.commit::<Pedersen<Projective>, false>(&pedersen_params, x)
.unwrap();
r1cs.check_relation(&incoming_instance_w, &incoming_committed_instance)
.unwrap();
let r = Fr::rand(&mut rng); // folding challenge would come from the RO
// NIFS.P
let (T, cmT) = NIFS::<Projective, Pedersen<Projective>>::compute_cmT(
&pedersen_params,
&r1cs,
&running_instance_w,
&running_committed_instance,
&incoming_instance_w,
&incoming_committed_instance,
)
.unwrap();
let (folded_w, _) = NIFS::<Projective, Pedersen<Projective>>::fold_instances(
r,
&running_instance_w,
&running_committed_instance,
&incoming_instance_w,
&incoming_committed_instance,
&T,
cmT,
)
.unwrap();
// NIFS.V
let folded_committed_instance = NIFS::<Projective, Pedersen<Projective>>::verify(
r,
&running_committed_instance,
&incoming_committed_instance,
&cmT,
);
r1cs.check_relation(&folded_w, &folded_committed_instance)
.unwrap();
// set running_instance for next loop iteration
running_instance_w = folded_w;
running_committed_instance = folded_committed_instance;
}
}
}