use ark_ec::CurveGroup;
							 | 
						|
								use ark_ff::PrimeField;
							 | 
						|
								use ark_std::One;
							 | 
						|
								use ark_std::Zero;
							 | 
						|
								use std::sync::Arc;
							 | 
						|
								
							 | 
						|
								use ark_std::rand::Rng;
							 | 
						|
								
							 | 
						|
								use super::Witness;
							 | 
						|
								use crate::ccs::CCS;
							 | 
						|
								use crate::commitment::{
							 | 
						|
								    pedersen::{Params as PedersenParams, Pedersen},
							 | 
						|
								    CommitmentScheme,
							 | 
						|
								};
							 | 
						|
								use crate::utils::mle::dense_vec_to_dense_mle;
							 | 
						|
								use crate::utils::vec::mat_vec_mul;
							 | 
						|
								use crate::utils::virtual_polynomial::{build_eq_x_r_vec, VirtualPolynomial};
							 | 
						|
								use crate::Error;
							 | 
						|
								
							 | 
						|
								/// Committed CCS instance
							 | 
						|
								#[derive(Debug, Clone)]
							 | 
						|
								pub struct CCCS<C: CurveGroup> {
							 | 
						|
								    // Commitment to witness
							 | 
						|
								    pub C: C,
							 | 
						|
								    // Public input/output
							 | 
						|
								    pub x: Vec<C::ScalarField>,
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								impl<F: PrimeField> CCS<F> {
							 | 
						|
								    pub fn to_cccs<R: Rng, C: CurveGroup>(
							 | 
						|
								        &self,
							 | 
						|
								        rng: &mut R,
							 | 
						|
								        pedersen_params: &PedersenParams<C>,
							 | 
						|
								        z: &[C::ScalarField],
							 | 
						|
								    ) -> Result<(CCCS<C>, Witness<C::ScalarField>), Error>
							 | 
						|
								    where
							 | 
						|
								        // enforce that CCS's F is the C::ScalarField
							 | 
						|
								        C: CurveGroup<ScalarField = F>,
							 | 
						|
								    {
							 | 
						|
								        let w: Vec<C::ScalarField> = z[(1 + self.l)..].to_vec();
							 | 
						|
								        let r_w = C::ScalarField::rand(rng);
							 | 
						|
								        let C = Pedersen::<C, true>::commit(pedersen_params, &w, &r_w)?;
							 | 
						|
								
							 | 
						|
								        Ok((
							 | 
						|
								            CCCS::<C> {
							 | 
						|
								                C,
							 | 
						|
								                x: z[1..(1 + self.l)].to_vec(),
							 | 
						|
								            },
							 | 
						|
								            Witness::<C::ScalarField> { w, r_w },
							 | 
						|
								        ))
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /// Computes q(x) = \sum^q c_i * \prod_{j \in S_i} ( \sum_{y \in {0,1}^s'} M_j(x, y) * z(y) )
							 | 
						|
								    /// polynomial over x
							 | 
						|
								    pub fn compute_q(&self, z: &[F]) -> Result<VirtualPolynomial<F>, Error> {
							 | 
						|
								        let mut q_x = VirtualPolynomial::<F>::new(self.s);
							 | 
						|
								        for i in 0..self.q {
							 | 
						|
								            let mut Q_k = vec![];
							 | 
						|
								            for &j in self.S[i].iter() {
							 | 
						|
								                Q_k.push(dense_vec_to_dense_mle(self.s, &mat_vec_mul(&self.M[j], z)?));
							 | 
						|
								            }
							 | 
						|
								            q_x.add_mle_list(Q_k.iter().map(|v| Arc::new(v.clone())), self.c[i])?;
							 | 
						|
								        }
							 | 
						|
								        Ok(q_x)
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /// Computes Q(x) = eq(beta, x) * q(x)
							 | 
						|
								    ///               = eq(beta, x) * \sum^q c_i * \prod_{j \in S_i} ( \sum_{y \in {0,1}^s'} M_j(x, y) * z(y) )
							 | 
						|
								    /// polynomial over x
							 | 
						|
								    pub fn compute_Q(&self, z: &[F], beta: &[F]) -> Result<VirtualPolynomial<F>, Error> {
							 | 
						|
								        let eq_beta = build_eq_x_r_vec(beta)?;
							 | 
						|
								        let eq_beta_mle = dense_vec_to_dense_mle(self.s, &eq_beta);
							 | 
						|
								
							 | 
						|
								        let mut Q = VirtualPolynomial::<F>::new(self.s);
							 | 
						|
								        for i in 0..self.q {
							 | 
						|
								            let mut Q_k = vec![];
							 | 
						|
								            for &j in self.S[i].iter() {
							 | 
						|
								                Q_k.push(dense_vec_to_dense_mle(self.s, &mat_vec_mul(&self.M[j], z)?));
							 | 
						|
								            }
							 | 
						|
								            Q_k.push(eq_beta_mle.clone());
							 | 
						|
								            Q.add_mle_list(Q_k.iter().map(|v| Arc::new(v.clone())), self.c[i])?;
							 | 
						|
								        }
							 | 
						|
								        Ok(Q)
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								impl<C: CurveGroup> CCCS<C> {
							 | 
						|
								    pub fn dummy(l: usize) -> CCCS<C>
							 | 
						|
								    where
							 | 
						|
								        C::ScalarField: PrimeField,
							 | 
						|
								    {
							 | 
						|
								        CCCS::<C> {
							 | 
						|
								            C: C::zero(),
							 | 
						|
								            x: vec![C::ScalarField::zero(); l],
							 | 
						|
								        }
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /// Perform the check of the CCCS instance described at section 4.1
							 | 
						|
								    pub fn check_relation(
							 | 
						|
								        &self,
							 | 
						|
								        pedersen_params: &PedersenParams<C>,
							 | 
						|
								        ccs: &CCS<C::ScalarField>,
							 | 
						|
								        w: &Witness<C::ScalarField>,
							 | 
						|
								    ) -> Result<(), Error> {
							 | 
						|
								        // check that C is the commitment of w. Notice that this is not verifying a Pedersen
							 | 
						|
								        // opening, but checking that the commitment comes from committing to the witness.
							 | 
						|
								        if self.C != Pedersen::<C, true>::commit(pedersen_params, &w.w, &w.r_w)? {
							 | 
						|
								            return Err(Error::NotSatisfied);
							 | 
						|
								        }
							 | 
						|
								
							 | 
						|
								        // check CCCS relation
							 | 
						|
								        let z: Vec<C::ScalarField> =
							 | 
						|
								            [vec![C::ScalarField::one()], self.x.clone(), w.w.to_vec()].concat();
							 | 
						|
								
							 | 
						|
								        // A CCCS relation is satisfied if the q(x) multivariate polynomial evaluates to zero in
							 | 
						|
								        // the hypercube, evaluating over the whole boolean hypercube for a normal-sized instance
							 | 
						|
								        // would take too much, this checks the CCS relation of the CCCS.
							 | 
						|
								        ccs.check_relation(&z)?;
							 | 
						|
								
							 | 
						|
								        Ok(())
							 | 
						|
								    }
							 | 
						|
								}
							 | 
						|
								
							 | 
						|
								#[cfg(test)]
							 | 
						|
								pub mod tests {
							 | 
						|
								    use ark_pallas::Fr;
							 | 
						|
								    use ark_std::test_rng;
							 | 
						|
								    use ark_std::UniformRand;
							 | 
						|
								
							 | 
						|
								    use super::*;
							 | 
						|
								    use crate::ccs::tests::{get_test_ccs, get_test_z};
							 | 
						|
								    use crate::utils::hypercube::BooleanHypercube;
							 | 
						|
								
							 | 
						|
								    /// Do some sanity checks on q(x). It's a multivariable polynomial and it should evaluate to zero inside the
							 | 
						|
								    /// hypercube, but to not-zero outside the hypercube.
							 | 
						|
								    #[test]
							 | 
						|
								    fn test_compute_q() {
							 | 
						|
								        let mut rng = test_rng();
							 | 
						|
								
							 | 
						|
								        let ccs = get_test_ccs::<Fr>();
							 | 
						|
								        let z = get_test_z(3);
							 | 
						|
								
							 | 
						|
								        let q = ccs.compute_q(&z).unwrap();
							 | 
						|
								
							 | 
						|
								        // Evaluate inside the hypercube
							 | 
						|
								        for x in BooleanHypercube::new(ccs.s) {
							 | 
						|
								            assert_eq!(Fr::zero(), q.evaluate(&x).unwrap());
							 | 
						|
								        }
							 | 
						|
								
							 | 
						|
								        // Evaluate outside the hypercube
							 | 
						|
								        let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
							 | 
						|
								        assert_ne!(Fr::zero(), q.evaluate(&beta).unwrap());
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /// Perform some sanity checks on Q(x).
							 | 
						|
								    #[test]
							 | 
						|
								    fn test_compute_Q() {
							 | 
						|
								        let mut rng = test_rng();
							 | 
						|
								
							 | 
						|
								        let ccs: CCS<Fr> = get_test_ccs();
							 | 
						|
								        let z = get_test_z(3);
							 | 
						|
								        ccs.check_relation(&z).unwrap();
							 | 
						|
								
							 | 
						|
								        let beta: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
							 | 
						|
								
							 | 
						|
								        // Compute Q(x) = eq(beta, x) * q(x).
							 | 
						|
								        let Q = ccs.compute_Q(&z, &beta).unwrap();
							 | 
						|
								
							 | 
						|
								        // Let's consider the multilinear polynomial G(x) = \sum_{y \in {0, 1}^s} eq(x, y) q(y)
							 | 
						|
								        // which interpolates the multivariate polynomial q(x) inside the hypercube.
							 | 
						|
								        //
							 | 
						|
								        // Observe that summing Q(x) inside the hypercube, directly computes G(\beta).
							 | 
						|
								        //
							 | 
						|
								        // Now, G(x) is multilinear and agrees with q(x) inside the hypercube. Since q(x) vanishes inside the
							 | 
						|
								        // hypercube, this means that G(x) also vanishes in the hypercube. Since G(x) is multilinear and vanishes
							 | 
						|
								        // inside the hypercube, this makes it the zero polynomial.
							 | 
						|
								        //
							 | 
						|
								        // Hence, evaluating G(x) at a random beta should give zero.
							 | 
						|
								
							 | 
						|
								        // Now sum Q(x) evaluations in the hypercube and expect it to be 0
							 | 
						|
								        let r = BooleanHypercube::new(ccs.s)
							 | 
						|
								            .map(|x| Q.evaluate(&x).unwrap())
							 | 
						|
								            .fold(Fr::zero(), |acc, result| acc + result);
							 | 
						|
								        assert_eq!(r, Fr::zero());
							 | 
						|
								    }
							 | 
						|
								
							 | 
						|
								    /// The polynomial G(x) (see above) interpolates q(x) inside the hypercube.
							 | 
						|
								    /// Summing Q(x) over the hypercube is equivalent to evaluating G(x) at some point.
							 | 
						|
								    /// This test makes sure that G(x) agrees with q(x) inside the hypercube, but not outside
							 | 
						|
								    #[test]
							 | 
						|
								    fn test_Q_against_q() {
							 | 
						|
								        let mut rng = test_rng();
							 | 
						|
								
							 | 
						|
								        let ccs: CCS<Fr> = get_test_ccs();
							 | 
						|
								        let z = get_test_z(3);
							 | 
						|
								        ccs.check_relation(&z).unwrap();
							 | 
						|
								
							 | 
						|
								        // Now test that if we create Q(x) with eq(d,y) where d is inside the hypercube, \sum Q(x) should be G(d) which
							 | 
						|
								        // should be equal to q(d), since G(x) interpolates q(x) inside the hypercube
							 | 
						|
								        let q = ccs.compute_q(&z).unwrap();
							 | 
						|
								        for d in BooleanHypercube::new(ccs.s) {
							 | 
						|
								            let Q_at_d = ccs.compute_Q(&z, &d).unwrap();
							 | 
						|
								
							 | 
						|
								            // Get G(d) by summing over Q_d(x) over the hypercube
							 | 
						|
								            let G_at_d = BooleanHypercube::new(ccs.s)
							 | 
						|
								                .map(|x| Q_at_d.evaluate(&x).unwrap())
							 | 
						|
								                .fold(Fr::zero(), |acc, result| acc + result);
							 | 
						|
								            assert_eq!(G_at_d, q.evaluate(&d).unwrap());
							 | 
						|
								        }
							 | 
						|
								
							 | 
						|
								        // Now test that they should disagree outside of the hypercube
							 | 
						|
								        let r: Vec<Fr> = (0..ccs.s).map(|_| Fr::rand(&mut rng)).collect();
							 | 
						|
								        let Q_at_r = ccs.compute_Q(&z, &r).unwrap();
							 | 
						|
								
							 | 
						|
								        // Get G(d) by summing over Q_d(x) over the hypercube
							 | 
						|
								        let G_at_r = BooleanHypercube::new(ccs.s)
							 | 
						|
								            .map(|x| Q_at_r.evaluate(&x).unwrap())
							 | 
						|
								            .fold(Fr::zero(), |acc, result| acc + result);
							 | 
						|
								        assert_ne!(G_at_r, q.evaluate(&r).unwrap());
							 | 
						|
								    }
							 | 
						|
								}
							 |