use ark_ec::CurveGroup;
|
|
use ark_poly::DenseMultilinearExtension;
|
|
use ark_std::One;
|
|
use std::sync::Arc;
|
|
|
|
use ark_std::{rand::Rng, UniformRand};
|
|
|
|
use super::cccs::Witness;
|
|
use super::utils::{compute_all_sum_Mz_evals, compute_sum_Mz};
|
|
use crate::ccs::CCS;
|
|
use crate::commitment::{
|
|
pedersen::{Params as PedersenParams, Pedersen},
|
|
CommitmentScheme,
|
|
};
|
|
use crate::utils::mle::{matrix_to_mle, vec_to_mle};
|
|
use crate::utils::virtual_polynomial::VirtualPolynomial;
|
|
use crate::Error;
|
|
|
|
/// Linearized Committed CCS instance
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct LCCCS<C: CurveGroup> {
|
|
// Commitment to witness
|
|
pub C: C,
|
|
// Relaxation factor of z for folded LCCCS
|
|
pub u: C::ScalarField,
|
|
// Public input/output
|
|
pub x: Vec<C::ScalarField>,
|
|
// Random evaluation point for the v_i
|
|
pub r_x: Vec<C::ScalarField>,
|
|
// Vector of v_i
|
|
pub v: Vec<C::ScalarField>,
|
|
}
|
|
|
|
impl<C: CurveGroup> CCS<C> {
|
|
/// Compute v_j values of the linearized committed CCS form
|
|
/// Given `r`, compute: \sum_{y \in {0,1}^s'} M_j(r, y) * z(y)
|
|
fn compute_v_j(&self, z: &[C::ScalarField], r: &[C::ScalarField]) -> Vec<C::ScalarField> {
|
|
compute_all_sum_Mz_evals(&self.M, &z.to_vec(), r, self.s_prime)
|
|
}
|
|
|
|
pub fn to_lcccs<R: Rng>(
|
|
&self,
|
|
rng: &mut R,
|
|
pedersen_params: &PedersenParams<C>,
|
|
z: &[C::ScalarField],
|
|
) -> Result<(LCCCS<C>, Witness<C::ScalarField>), Error> {
|
|
let w: Vec<C::ScalarField> = z[(1 + self.l)..].to_vec();
|
|
let r_w = C::ScalarField::rand(rng);
|
|
let C = Pedersen::<C, true>::commit(pedersen_params, &w, &r_w)?;
|
|
|
|
let r_x: Vec<C::ScalarField> = (0..self.s).map(|_| C::ScalarField::rand(rng)).collect();
|
|
let v = self.compute_v_j(z, &r_x);
|
|
|
|
Ok((
|
|
LCCCS::<C> {
|
|
C,
|
|
u: C::ScalarField::one(),
|
|
x: z[1..(1 + self.l)].to_vec(),
|
|
r_x,
|
|
v,
|
|
},
|
|
Witness::<C::ScalarField> { w, r_w },
|
|
))
|
|
}
|
|
}
|
|
|
|
impl<C: CurveGroup> LCCCS<C> {
|
|
/// Compute all L_j(x) polynomials
|
|
pub fn compute_Ls(
|
|
&self,
|
|
ccs: &CCS<C>,
|
|
z: &Vec<C::ScalarField>,
|
|
) -> Vec<VirtualPolynomial<C::ScalarField>> {
|
|
let z_mle = vec_to_mle(ccs.s_prime, z);
|
|
// Convert all matrices to MLE
|
|
let M_x_y_mle: Vec<DenseMultilinearExtension<C::ScalarField>> =
|
|
ccs.M.clone().into_iter().map(matrix_to_mle).collect();
|
|
|
|
let mut vec_L_j_x = Vec::with_capacity(ccs.t);
|
|
for M_j in M_x_y_mle {
|
|
let sum_Mz = compute_sum_Mz(M_j, &z_mle, ccs.s_prime);
|
|
let sum_Mz_virtual =
|
|
VirtualPolynomial::new_from_mle(&Arc::new(sum_Mz.clone()), C::ScalarField::one());
|
|
let L_j_x = sum_Mz_virtual.build_f_hat(&self.r_x).unwrap();
|
|
vec_L_j_x.push(L_j_x);
|
|
}
|
|
|
|
vec_L_j_x
|
|
}
|
|
|
|
/// Perform the check of the LCCCS instance described at section 4.2
|
|
pub fn check_relation(
|
|
&self,
|
|
pedersen_params: &PedersenParams<C>,
|
|
ccs: &CCS<C>,
|
|
w: &Witness<C::ScalarField>,
|
|
) -> Result<(), Error> {
|
|
// check that C is the commitment of w. Notice that this is not verifying a Pedersen
|
|
// opening, but checking that the Commitment comes from committing to the witness.
|
|
if self.C != Pedersen::<C, true>::commit(pedersen_params, &w.w, &w.r_w)? {
|
|
return Err(Error::NotSatisfied);
|
|
}
|
|
|
|
// check CCS relation
|
|
let z: Vec<C::ScalarField> = [vec![self.u], self.x.clone(), w.w.to_vec()].concat();
|
|
let computed_v = compute_all_sum_Mz_evals(&ccs.M, &z, &self.r_x, ccs.s_prime);
|
|
if computed_v != self.v {
|
|
return Err(Error::NotSatisfied);
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
pub mod tests {
|
|
use super::*;
|
|
use ark_std::Zero;
|
|
|
|
use crate::ccs::tests::{get_test_ccs, get_test_z};
|
|
use crate::utils::hypercube::BooleanHypercube;
|
|
use ark_std::test_rng;
|
|
|
|
use ark_pallas::{Fr, Projective};
|
|
|
|
#[test]
|
|
/// Test linearized CCCS v_j against the L_j(x)
|
|
fn test_lcccs_v_j() {
|
|
let mut rng = test_rng();
|
|
|
|
let ccs = get_test_ccs();
|
|
let z = get_test_z(3);
|
|
ccs.check_relation(&z.clone()).unwrap();
|
|
|
|
let (pedersen_params, _) =
|
|
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
|
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z).unwrap();
|
|
// with our test vector coming from R1CS, v should have length 3
|
|
assert_eq!(lcccs.v.len(), 3);
|
|
|
|
let vec_L_j_x = lcccs.compute_Ls(&ccs, &z);
|
|
assert_eq!(vec_L_j_x.len(), lcccs.v.len());
|
|
|
|
for (v_i, L_j_x) in lcccs.v.into_iter().zip(vec_L_j_x) {
|
|
let sum_L_j_x = BooleanHypercube::new(ccs.s)
|
|
.map(|y| L_j_x.evaluate(&y).unwrap())
|
|
.fold(Fr::zero(), |acc, result| acc + result);
|
|
assert_eq!(v_i, sum_L_j_x);
|
|
}
|
|
}
|
|
|
|
/// Given a bad z, check that the v_j should not match with the L_j(x)
|
|
#[test]
|
|
fn test_bad_v_j() {
|
|
let mut rng = test_rng();
|
|
|
|
let ccs = get_test_ccs();
|
|
let z = get_test_z(3);
|
|
ccs.check_relation(&z.clone()).unwrap();
|
|
|
|
// Mutate z so that the relation does not hold
|
|
let mut bad_z = z.clone();
|
|
bad_z[3] = Fr::zero();
|
|
assert!(ccs.check_relation(&bad_z.clone()).is_err());
|
|
|
|
let (pedersen_params, _) =
|
|
Pedersen::<Projective>::setup(&mut rng, ccs.n - ccs.l - 1).unwrap();
|
|
// Compute v_j with the right z
|
|
let (lcccs, _) = ccs.to_lcccs(&mut rng, &pedersen_params, &z).unwrap();
|
|
// with our test vector coming from R1CS, v should have length 3
|
|
assert_eq!(lcccs.v.len(), 3);
|
|
|
|
// Bad compute L_j(x) with the bad z
|
|
let vec_L_j_x = lcccs.compute_Ls(&ccs, &bad_z);
|
|
assert_eq!(vec_L_j_x.len(), lcccs.v.len());
|
|
|
|
// Make sure that the LCCCS is not satisfied given these L_j(x)
|
|
// i.e. summing L_j(x) over the hypercube should not give v_j for all j
|
|
let mut satisfied = true;
|
|
for (v_i, L_j_x) in lcccs.v.into_iter().zip(vec_L_j_x) {
|
|
let sum_L_j_x = BooleanHypercube::new(ccs.s)
|
|
.map(|y| L_j_x.evaluate(&y).unwrap())
|
|
.fold(Fr::zero(), |acc, result| acc + result);
|
|
if v_i != sum_L_j_x {
|
|
satisfied = false;
|
|
}
|
|
}
|
|
|
|
assert!(!satisfied);
|
|
}
|
|
}
|