mirror of
https://github.com/arnaucube/testudo.git
synced 2026-01-12 16:51:28 +01:00
optimize the computation of digest of A/B/C matrices (#55)
* optimize the computation of digest of A/B/C matrices * update version * address clippy * address clippy
This commit is contained in:
committed by
maramihali
parent
d40640555e
commit
0013f81a6e
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "spartan"
|
||||
version = "0.7.0"
|
||||
version = "0.7.1"
|
||||
authors = ["Srinath Setty <srinath@microsoft.com>"]
|
||||
edition = "2021"
|
||||
description = "High-speed zkSNARKs without trusted setup"
|
||||
|
||||
@@ -121,7 +121,7 @@ impl IdentityPolynomial {
|
||||
impl DensePolynomial {
|
||||
pub fn new(Z: Vec<Scalar>) -> Self {
|
||||
DensePolynomial {
|
||||
num_vars: Z.len().log_2() as usize,
|
||||
num_vars: Z.len().log_2(),
|
||||
len: Z.len(),
|
||||
Z,
|
||||
}
|
||||
|
||||
40
src/lib.rs
40
src/lib.rs
@@ -3,15 +3,15 @@
|
||||
#![deny(missing_docs)]
|
||||
#![allow(clippy::assertions_on_result_states)]
|
||||
|
||||
extern crate ark_std;
|
||||
extern crate byteorder;
|
||||
extern crate core;
|
||||
extern crate digest;
|
||||
extern crate lazy_static;
|
||||
extern crate merlin;
|
||||
extern crate rand;
|
||||
extern crate sha3;
|
||||
extern crate test;
|
||||
extern crate rand;
|
||||
extern crate lazy_static;
|
||||
extern crate ark_std;
|
||||
|
||||
#[macro_use]
|
||||
extern crate json;
|
||||
@@ -37,9 +37,10 @@ mod timer;
|
||||
mod transcript;
|
||||
mod unipoly;
|
||||
|
||||
|
||||
use core::{cmp::max};
|
||||
use std::borrow::Borrow;
|
||||
use ark_ff::{BigInteger, Field, PrimeField};
|
||||
use ark_serialize::*;
|
||||
use ark_std::{One, UniformRand, Zero};
|
||||
use core::cmp::max;
|
||||
use errors::{ProofVerifyError, R1CSError};
|
||||
use merlin::Transcript;
|
||||
use r1csinstance::{
|
||||
@@ -48,9 +49,7 @@ use r1csinstance::{
|
||||
use r1csproof::{R1CSGens, R1CSProof};
|
||||
use random::RandomTape;
|
||||
use scalar::Scalar;
|
||||
use ark_serialize::*;
|
||||
use ark_ff::{PrimeField, Field, BigInteger};
|
||||
use ark_std::{One, Zero, UniformRand};
|
||||
use std::borrow::Borrow;
|
||||
use timer::Timer;
|
||||
use transcript::{AppendToTranscript, ProofTranscript};
|
||||
|
||||
@@ -122,9 +121,11 @@ pub type VarsAssignment = Assignment;
|
||||
pub type InputsAssignment = Assignment;
|
||||
|
||||
/// `Instance` holds the description of R1CS matrices
|
||||
/// `Instance` holds the description of R1CS matrices and a hash of the matrices
|
||||
#[derive(Debug)]
|
||||
pub struct Instance {
|
||||
inst: R1CSInstance,
|
||||
digest: Vec<u8>,
|
||||
}
|
||||
|
||||
impl Instance {
|
||||
@@ -170,7 +171,7 @@ impl Instance {
|
||||
};
|
||||
|
||||
let bytes_to_scalar =
|
||||
|tups: & [(usize, usize, Vec<u8>)]| -> Result<Vec<(usize, usize, Scalar)>, R1CSError> {
|
||||
|tups: &[(usize, usize, Vec<u8>)]| -> Result<Vec<(usize, usize, Scalar)>, R1CSError> {
|
||||
let mut mat: Vec<(usize, usize, Scalar)> = Vec::new();
|
||||
for (row, col, val_bytes) in tups {
|
||||
// row must be smaller than num_cons
|
||||
@@ -232,7 +233,9 @@ impl Instance {
|
||||
&C_scalar.unwrap(),
|
||||
);
|
||||
|
||||
Ok(Instance { inst })
|
||||
let digest = inst.get_digest();
|
||||
|
||||
Ok(Instance { inst, digest })
|
||||
}
|
||||
|
||||
/// Checks if a given R1CSInstance is satisfiable with a given variables and inputs assignments
|
||||
@@ -274,8 +277,9 @@ impl Instance {
|
||||
num_inputs: usize,
|
||||
) -> (Instance, VarsAssignment, InputsAssignment) {
|
||||
let (inst, vars, inputs) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||||
let digest = inst.get_digest();
|
||||
(
|
||||
Instance { inst },
|
||||
Instance { inst, digest },
|
||||
VarsAssignment { assignment: vars },
|
||||
InputsAssignment { assignment: inputs },
|
||||
)
|
||||
@@ -520,7 +524,7 @@ impl NIZK {
|
||||
let mut random_tape = RandomTape::new(b"proof");
|
||||
|
||||
transcript.append_protocol_name(NIZK::protocol_name());
|
||||
inst.inst.append_to_transcript(b"inst", transcript);
|
||||
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
|
||||
|
||||
let (r1cs_sat_proof, rx, ry) = {
|
||||
// we might need to pad variables
|
||||
@@ -566,7 +570,7 @@ impl NIZK {
|
||||
let timer_verify = Timer::new("NIZK::verify");
|
||||
|
||||
transcript.append_protocol_name(NIZK::protocol_name());
|
||||
inst.inst.append_to_transcript(b"inst", transcript);
|
||||
transcript.append_message(b"R1CSInstanceDigest", &inst.digest);
|
||||
|
||||
// We send evaluations of A, B, C at r = (rx, ry) as claims
|
||||
// to enable the verifier complete the first sum-check
|
||||
@@ -599,7 +603,7 @@ impl NIZK {
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use ark_ff::{PrimeField};
|
||||
use ark_ff::PrimeField;
|
||||
|
||||
#[test]
|
||||
pub fn check_snark() {
|
||||
@@ -698,7 +702,11 @@ mod tests {
|
||||
A.push((0, num_vars + 2, (Scalar::one().into_repr().to_bytes_le()))); // 1*a
|
||||
B.push((0, num_vars + 2, Scalar::one().into_repr().to_bytes_le())); // 1*a
|
||||
C.push((0, num_vars + 1, Scalar::one().into_repr().to_bytes_le())); // 1*z
|
||||
C.push((0, num_vars, (-Scalar::from(13u64)).into_repr().to_bytes_le())); // -13*1
|
||||
C.push((
|
||||
0,
|
||||
num_vars,
|
||||
(-Scalar::from(13u64)).into_repr().to_bytes_le(),
|
||||
)); // -13*1
|
||||
C.push((0, num_vars + 3, (-Scalar::one()).into_repr().to_bytes_le())); // -1*b
|
||||
|
||||
// Var Assignments (Z_0 = 16 is the only output)
|
||||
|
||||
@@ -62,7 +62,7 @@ impl BulletReductionProof {
|
||||
// All of the input vectors must have a length that is a power of two.
|
||||
let mut n = G.len();
|
||||
assert!(n.is_power_of_two());
|
||||
let lg_n = n.log_2() as usize;
|
||||
let lg_n = n.log_2();
|
||||
|
||||
// All of the input vectors must have the same length.
|
||||
assert_eq!(G.len(), n);
|
||||
|
||||
@@ -38,7 +38,7 @@ impl ProductCircuit {
|
||||
let mut left_vec: Vec<DensePolynomial> = Vec::new();
|
||||
let mut right_vec: Vec<DensePolynomial> = Vec::new();
|
||||
|
||||
let num_layers = poly.len().log_2() as usize;
|
||||
let num_layers = poly.len().log_2();
|
||||
let (outp_left, outp_right) = poly.split(poly.len() / 2);
|
||||
|
||||
left_vec.push(outp_left);
|
||||
@@ -183,7 +183,7 @@ impl ProductCircuitEvalProof {
|
||||
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C.len().log_2() as usize;
|
||||
let num_rounds_prod = poly_C.len().log_2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
@@ -224,7 +224,7 @@ impl ProductCircuitEvalProof {
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Scalar, Vec<Scalar>) {
|
||||
let num_layers = len.log_2() as usize;
|
||||
let num_layers = len.log_2();
|
||||
let mut claim = eval;
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
//let mut num_rounds = 0;
|
||||
@@ -280,7 +280,7 @@ impl ProductCircuitEvalProofBatched {
|
||||
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
||||
assert_eq!(poly_C_par.len(), len / 2);
|
||||
|
||||
let num_rounds_prod = poly_C_par.len().log_2() as usize;
|
||||
let num_rounds_prod = poly_C_par.len().log_2();
|
||||
let comb_func_prod = |poly_A_comp: &Scalar,
|
||||
poly_B_comp: &Scalar,
|
||||
poly_C_comp: &Scalar|
|
||||
@@ -390,7 +390,7 @@ impl ProductCircuitEvalProofBatched {
|
||||
len: usize,
|
||||
transcript: &mut Transcript,
|
||||
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
|
||||
let num_layers = len.log_2() as usize;
|
||||
let num_layers = len.log_2();
|
||||
let mut rand: Vec<Scalar> = Vec::new();
|
||||
//let mut num_rounds = 0;
|
||||
assert_eq!(self.proof.len(), num_layers);
|
||||
|
||||
@@ -10,10 +10,10 @@ use super::sparse_mlpoly::{
|
||||
SparseMatPolyCommitmentGens, SparseMatPolyEvalProof, SparseMatPolynomial,
|
||||
};
|
||||
use super::timer::Timer;
|
||||
use merlin::Transcript;
|
||||
use ark_ff::Field;
|
||||
use ark_serialize::*;
|
||||
use ark_std::{One, Zero, UniformRand};
|
||||
use ark_ff::{Field};
|
||||
use ark_std::{One, UniformRand, Zero};
|
||||
use merlin::Transcript;
|
||||
|
||||
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
|
||||
pub struct R1CSInstance {
|
||||
@@ -25,14 +25,6 @@ pub struct R1CSInstance {
|
||||
C: SparseMatPolynomial,
|
||||
}
|
||||
|
||||
impl AppendToTranscript for R1CSInstance {
|
||||
fn append_to_transcript(&self, _label: &'static [u8], transcript: &mut Transcript) {
|
||||
let mut bytes = Vec::new();
|
||||
self.serialize(&mut bytes).unwrap();
|
||||
transcript.append_message(b"R1CSInstance", &bytes);
|
||||
}
|
||||
}
|
||||
|
||||
pub struct R1CSCommitmentGens {
|
||||
gens: SparseMatPolyCommitmentGens,
|
||||
}
|
||||
@@ -46,8 +38,8 @@ impl R1CSCommitmentGens {
|
||||
num_nz_entries: usize,
|
||||
) -> R1CSCommitmentGens {
|
||||
assert!(num_inputs < num_vars);
|
||||
let num_poly_vars_x = num_cons.log_2() as usize;
|
||||
let num_poly_vars_y = (2 * num_vars).log_2() as usize;
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
let gens =
|
||||
SparseMatPolyCommitmentGens::new(label, num_poly_vars_x, num_poly_vars_y, num_nz_entries, 3);
|
||||
R1CSCommitmentGens { gens }
|
||||
@@ -115,8 +107,8 @@ impl R1CSInstance {
|
||||
assert!(num_inputs < num_vars);
|
||||
|
||||
// no errors, so create polynomials
|
||||
let num_poly_vars_x = num_cons.log_2() as usize;
|
||||
let num_poly_vars_y = (2 * num_vars).log_2() as usize;
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
|
||||
let mat_A = (0..A.len())
|
||||
.map(|i| SparseMatEntry::new(A[i].0, A[i].1, A[i].2))
|
||||
@@ -154,6 +146,12 @@ impl R1CSInstance {
|
||||
self.num_inputs
|
||||
}
|
||||
|
||||
pub fn get_digest(&self) -> Vec<u8> {
|
||||
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
|
||||
bincode::serialize_into(&mut encoder, &self).unwrap();
|
||||
encoder.finish().unwrap()
|
||||
}
|
||||
|
||||
pub fn produce_synthetic_r1cs(
|
||||
num_cons: usize,
|
||||
num_vars: usize,
|
||||
@@ -163,11 +161,11 @@ impl R1CSInstance {
|
||||
Timer::print(&format!("number_of_variables {}", num_vars));
|
||||
Timer::print(&format!("number_of_inputs {}", num_inputs));
|
||||
|
||||
let mut rng = ark_std::rand::thread_rng();
|
||||
let mut rng = ark_std::rand::thread_rng();
|
||||
|
||||
// assert num_cons and num_vars are power of 2
|
||||
assert_eq!((num_cons.log_2() as usize).pow2(), num_cons);
|
||||
assert_eq!((num_vars.log_2() as usize).pow2(), num_vars);
|
||||
assert_eq!((num_cons.log_2()).pow2(), num_cons);
|
||||
assert_eq!((num_vars.log_2()).pow2(), num_vars);
|
||||
|
||||
// num_inputs + 1 <= num_vars
|
||||
assert!(num_inputs < num_vars);
|
||||
@@ -214,8 +212,8 @@ impl R1CSInstance {
|
||||
Timer::print(&format!("number_non-zero_entries_B {}", B.len()));
|
||||
Timer::print(&format!("number_non-zero_entries_C {}", C.len()));
|
||||
|
||||
let num_poly_vars_x = num_cons.log_2() as usize;
|
||||
let num_poly_vars_y = (2 * num_vars).log_2() as usize;
|
||||
let num_poly_vars_x = num_cons.log_2();
|
||||
let num_poly_vars_y = (2 * num_vars).log_2();
|
||||
let poly_A = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, A);
|
||||
let poly_B = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, B);
|
||||
let poly_C = SparseMatPolynomial::new(num_poly_vars_x, num_poly_vars_y, C);
|
||||
@@ -260,7 +258,7 @@ impl R1CSInstance {
|
||||
assert_eq!(Bz.len(), self.num_cons);
|
||||
assert_eq!(Cz.len(), self.num_cons);
|
||||
let res: usize = (0..self.num_cons)
|
||||
.map(|i| if Az[i] * Bz[i] == Cz[i] { 0 } else { 1 })
|
||||
.map(|i| usize::from(Az[i] * Bz[i] != Cz[i]))
|
||||
.sum();
|
||||
|
||||
res == 0
|
||||
|
||||
@@ -66,7 +66,7 @@ pub struct R1CSGens {
|
||||
|
||||
impl R1CSGens {
|
||||
pub fn new(label: &'static [u8], _num_cons: usize, num_vars: usize) -> Self {
|
||||
let num_poly_vars = num_vars.log_2() as usize;
|
||||
let num_poly_vars = num_vars.log_2();
|
||||
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
|
||||
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
|
||||
R1CSGens { gens_sc, gens_pc }
|
||||
@@ -155,10 +155,7 @@ impl R1CSProof {
|
||||
};
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let (num_rounds_x, num_rounds_y) = (
|
||||
inst.get_num_cons().log_2() as usize,
|
||||
z.len().log_2() as usize,
|
||||
);
|
||||
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log_2(), z.len().log_2());
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau).evals());
|
||||
@@ -250,7 +247,7 @@ impl R1CSProof {
|
||||
|
||||
let n = num_vars;
|
||||
|
||||
let (num_rounds_x, num_rounds_y) = (num_cons.log_2() as usize, (2 * num_vars).log_2() as usize);
|
||||
let (num_rounds_x, num_rounds_y) = (num_cons.log_2(), (2 * num_vars).log_2());
|
||||
|
||||
// derive the verifier's challenge tau
|
||||
let tau = transcript.challenge_vector(b"challenge_tau", num_rounds_x);
|
||||
@@ -295,7 +292,7 @@ impl R1CSProof {
|
||||
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
|
||||
.collect::<Vec<SparsePolyEntry>>(),
|
||||
);
|
||||
SparsePolynomial::new(n.log_2() as usize, input_as_sparse_poly_entries).evaluate(&ry[1..])
|
||||
SparsePolynomial::new(n.log_2(), input_as_sparse_poly_entries).evaluate(&ry[1..])
|
||||
};
|
||||
|
||||
let eval_Z_at_ry = (Scalar::one() - ry[0]) * self.eval_vars_at_ry + ry[0] * poly_input_eval;
|
||||
|
||||
@@ -90,10 +90,7 @@ impl DerefsEvalProof {
|
||||
transcript: &mut Transcript,
|
||||
random_tape: &mut RandomTape,
|
||||
) -> PolyEvalProof {
|
||||
assert_eq!(
|
||||
joint_poly.get_num_vars(),
|
||||
r.len() + evals.len().log_2() as usize
|
||||
);
|
||||
assert_eq!(joint_poly.get_num_vars(), r.len() + evals.len().log_2());
|
||||
|
||||
// append the claimed evaluations to transcript
|
||||
evals.append_to_transcript(b"evals_ops_val", transcript);
|
||||
@@ -101,7 +98,7 @@ impl DerefsEvalProof {
|
||||
// n-to-1 reduction
|
||||
let (r_joint, eval_joint) = {
|
||||
let challenges =
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals.len().log_2() as usize);
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals.len().log_2());
|
||||
let mut poly_evals = DensePolynomial::new(evals);
|
||||
for i in (0..challenges.len()).rev() {
|
||||
poly_evals.bound_poly_var_bot(&challenges[i]);
|
||||
@@ -167,7 +164,7 @@ impl DerefsEvalProof {
|
||||
|
||||
// n-to-1 reduction
|
||||
let challenges =
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals.len().log_2() as usize);
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals.len().log_2());
|
||||
let mut poly_evals = DensePolynomial::new(evals);
|
||||
for i in (0..challenges.len()).rev() {
|
||||
poly_evals.bound_poly_var_bot(&challenges[i]);
|
||||
@@ -301,15 +298,15 @@ impl SparseMatPolyCommitmentGens {
|
||||
num_nz_entries: usize,
|
||||
batch_size: usize,
|
||||
) -> SparseMatPolyCommitmentGens {
|
||||
let num_vars_ops = num_nz_entries.next_power_of_two().log_2() as usize
|
||||
+ (batch_size * 5).next_power_of_two().log_2() as usize;
|
||||
let num_vars_ops =
|
||||
num_nz_entries.next_power_of_two().log_2() + (batch_size * 5).next_power_of_two().log_2();
|
||||
let num_vars_mem = if num_vars_x > num_vars_y {
|
||||
num_vars_x
|
||||
} else {
|
||||
num_vars_y
|
||||
} + 1;
|
||||
let num_vars_derefs = num_nz_entries.next_power_of_two().log_2() as usize
|
||||
+ (batch_size * 2).next_power_of_two().log_2() as usize;
|
||||
let num_vars_derefs =
|
||||
num_nz_entries.next_power_of_two().log_2() + (batch_size * 2).next_power_of_two().log_2();
|
||||
|
||||
let gens_ops = PolyCommitmentGens::new(num_vars_ops, label);
|
||||
let gens_mem = PolyCommitmentGens::new(num_vars_mem, label);
|
||||
@@ -779,10 +776,8 @@ impl HashLayerProof {
|
||||
evals_ops.extend(&eval_val_vec);
|
||||
evals_ops.resize(evals_ops.len().next_power_of_two(), Scalar::zero());
|
||||
evals_ops.append_to_transcript(b"claim_evals_ops", transcript);
|
||||
let challenges_ops = transcript.challenge_vector(
|
||||
b"challenge_combine_n_to_one",
|
||||
evals_ops.len().log_2() as usize,
|
||||
);
|
||||
let challenges_ops =
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals_ops.len().log_2());
|
||||
|
||||
let mut poly_evals_ops = DensePolynomial::new(evals_ops);
|
||||
for i in (0..challenges_ops.len()).rev() {
|
||||
@@ -808,10 +803,8 @@ impl HashLayerProof {
|
||||
// form a single decommitment using comb_comb_mem at rand_mem
|
||||
let evals_mem: Vec<Scalar> = vec![eval_row_audit_ts, eval_col_audit_ts];
|
||||
evals_mem.append_to_transcript(b"claim_evals_mem", transcript);
|
||||
let challenges_mem = transcript.challenge_vector(
|
||||
b"challenge_combine_two_to_one",
|
||||
evals_mem.len().log_2() as usize,
|
||||
);
|
||||
let challenges_mem =
|
||||
transcript.challenge_vector(b"challenge_combine_two_to_one", evals_mem.len().log_2());
|
||||
|
||||
let mut poly_evals_mem = DensePolynomial::new(evals_mem);
|
||||
for i in (0..challenges_mem.len()).rev() {
|
||||
@@ -953,10 +946,8 @@ impl HashLayerProof {
|
||||
evals_ops.extend(eval_val_vec);
|
||||
evals_ops.resize(evals_ops.len().next_power_of_two(), Scalar::zero());
|
||||
evals_ops.append_to_transcript(b"claim_evals_ops", transcript);
|
||||
let challenges_ops = transcript.challenge_vector(
|
||||
b"challenge_combine_n_to_one",
|
||||
evals_ops.len().log_2() as usize,
|
||||
);
|
||||
let challenges_ops =
|
||||
transcript.challenge_vector(b"challenge_combine_n_to_one", evals_ops.len().log_2());
|
||||
|
||||
let mut poly_evals_ops = DensePolynomial::new(evals_ops);
|
||||
for i in (0..challenges_ops.len()).rev() {
|
||||
@@ -979,10 +970,8 @@ impl HashLayerProof {
|
||||
// form a single decommitment using comb_comb_mem at rand_mem
|
||||
let evals_mem: Vec<Scalar> = vec![*eval_row_audit_ts, *eval_col_audit_ts];
|
||||
evals_mem.append_to_transcript(b"claim_evals_mem", transcript);
|
||||
let challenges_mem = transcript.challenge_vector(
|
||||
b"challenge_combine_two_to_one",
|
||||
evals_mem.len().log_2() as usize,
|
||||
);
|
||||
let challenges_mem =
|
||||
transcript.challenge_vector(b"challenge_combine_two_to_one", evals_mem.len().log_2());
|
||||
|
||||
let mut poly_evals_mem = DensePolynomial::new(evals_mem);
|
||||
for i in (0..challenges_mem.len()).rev() {
|
||||
@@ -1632,8 +1621,8 @@ use rand::RngCore;
|
||||
let num_nz_entries: usize = 256;
|
||||
let num_rows: usize = 256;
|
||||
let num_cols: usize = 256;
|
||||
let num_vars_x: usize = num_rows.log_2() as usize;
|
||||
let num_vars_y: usize = num_cols.log_2() as usize;
|
||||
let num_vars_x: usize = num_rows.log_2();
|
||||
let num_vars_y: usize = num_cols.log_2();
|
||||
|
||||
let mut M: Vec<SparseMatEntry> = Vec::new();
|
||||
|
||||
|
||||
Reference in New Issue
Block a user