Browse Source

Add example proving knowledge of cubic equation solution (#26)

master
Jakub Konka 4 years ago
committed by GitHub
parent
commit
7b102a241f
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 149 additions and 1 deletions
  1. +3
    -1
      .github/workflows/rust.yml
  2. +2
    -0
      README.md
  3. +144
    -0
      examples/cubic.rs

+ 3
- 1
.github/workflows/rust.yml

@ -14,8 +14,10 @@ jobs:
steps: steps:
- uses: actions/checkout@v2 - uses: actions/checkout@v2
- name: Install - name: Install
run: rustup default nightly
run: rustup default nightly-2020-09-15
- name: Build - name: Build
run: cargo build --verbose run: cargo build --verbose
- name: Run tests - name: Run tests
run: cargo test --verbose run: cargo test --verbose
- name: Build examples
run: cargo build --examples --verbose

+ 2
- 0
README.md

@ -248,6 +248,8 @@ Finally, we provide an example that specifies a custom R1CS instance instead of
# } # }
``` ```
For more examples, see [`examples/`](examples) directory in this repo.
## Building `libspartan` ## Building `libspartan`
Install [`rustup`](https://rustup.rs/) Install [`rustup`](https://rustup.rs/)

+ 144
- 0
examples/cubic.rs

@ -0,0 +1,144 @@
//! Demonstrates how to produces a proof for canonical cubic equation: `x^3 + x + 5 = y`.
//! The example is described in detail [here].
//!
//! The R1CS for this problem consists of the following 4 constraints:
//! `Z0 * Z0 - Z1 = 0`
//! `Z1 * Z0 - Z2 = 0`
//! `(Z2 + Z0) * 1 - Z3 = 0`
//! `(Z3 + 5) * 1 - I0 = 0`
//!
//! [here]: https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
use curve25519_dalek::scalar::Scalar;
use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK};
use merlin::Transcript;
use rand::rngs::OsRng;
#[allow(non_snake_case)]
fn produce_r1cs() -> (
usize,
usize,
usize,
usize,
Instance,
VarsAssignment,
InputsAssignment,
) {
// parameters of the R1CS instance
let num_cons = 4;
let num_vars = 4;
let num_inputs = 1;
let num_non_zero_entries = 8;
// We will encode the above constraints into three matrices, where
// the coefficients in the matrix are in the little-endian byte order
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
let one = Scalar::one().to_bytes();
// R1CS is a set of three sparse matrices A B C, where is a row for every
// constraint and a column for every entry in z = (vars, 1, inputs)
// An R1CS instance is satisfiable iff:
// Az \circ Bz = Cz, where z = (vars, 1, inputs)
// constraint 0 entries in (A,B,C)
// constraint 0 is Z0 * Z0 - Z1 = 0.
A.push((0, 0, one));
B.push((0, 0, one));
C.push((0, 1, one));
// constraint 1 entries in (A,B,C)
// constraint 1 is Z1 * Z0 - Z2 = 0.
A.push((1, 1, one));
B.push((1, 0, one));
C.push((1, 2, one));
// constraint 2 entries in (A,B,C)
// constraint 2 is (Z2 + Z0) * 1 - Z3 = 0.
A.push((2, 2, one));
A.push((2, 0, one));
B.push((2, num_vars, one));
C.push((2, 3, one));
// constraint 3 entries in (A,B,C)
// constraint 3 is (Z3 + 5) * 1 - I0 = 0.
A.push((3, 3, one));
A.push((3, num_vars, Scalar::from(5u32).to_bytes()));
B.push((3, num_vars, one));
C.push((3, num_vars + 1, one));
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
// compute a satisfying assignment
let mut csprng: OsRng = OsRng;
let z0 = Scalar::random(&mut csprng);
let z1 = z0 * z0; // constraint 0
let z2 = z1 * z0; // constraint 1
let z3 = z2 + z0; // constraint 2
let i0 = z3 + Scalar::from(5u32); // constraint 3
// create a VarsAssignment
let mut vars = vec![Scalar::zero().to_bytes(); num_vars];
vars[0] = z0.to_bytes();
vars[1] = z1.to_bytes();
vars[2] = z2.to_bytes();
vars[3] = z3.to_bytes();
let assignment_vars = VarsAssignment::new(&vars).unwrap();
// create an InputsAssignment
let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs];
inputs[0] = i0.to_bytes();
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
// check if the instance we created is satisfiable
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
assert_eq!(res.unwrap(), true, "should be satisfied");
(
num_cons,
num_vars,
num_inputs,
num_non_zero_entries,
inst,
assignment_vars,
assignment_inputs,
)
}
fn main() {
// produce an R1CS instance
let (
num_cons,
num_vars,
num_inputs,
num_non_zero_entries,
inst,
assignment_vars,
assignment_inputs,
) = produce_r1cs();
// produce public parameters
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
// create a commitment to the R1CS instance
let (comm, decomm) = SNARK::encode(&inst, &gens);
// produce a proof of satisfiability
let mut prover_transcript = Transcript::new(b"snark_example");
let proof = SNARK::prove(
&inst,
&decomm,
assignment_vars,
&assignment_inputs,
&gens,
&mut prover_transcript,
);
// verify the proof of satisfiability
let mut verifier_transcript = Transcript::new(b"snark_example");
assert!(proof
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
.is_ok());
println!("proof verification successful!");
}

Loading…
Cancel
Save