//! Demonstrates how to produces a proof for canonical cubic equation: `x^3 + x + 5 = y`. //! The example is described in detail [here]. //! //! The R1CS for this problem consists of the following 4 constraints: //! `Z0 * Z0 - Z1 = 0` //! `Z1 * Z0 - Z2 = 0` //! `(Z2 + Z0) * 1 - Z3 = 0` //! `(Z3 + 5) * 1 - I0 = 0` //! //! [here]: https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 use curve25519_dalek::scalar::Scalar; use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK}; use merlin::Transcript; use rand::rngs::OsRng; #[allow(non_snake_case)] fn produce_r1cs() -> ( usize, usize, usize, usize, Instance, VarsAssignment, InputsAssignment, ) { // parameters of the R1CS instance let num_cons = 4; let num_vars = 4; let num_inputs = 1; let num_non_zero_entries = 8; // We will encode the above constraints into three matrices, where // the coefficients in the matrix are in the little-endian byte order let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new(); let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new(); let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new(); let one = Scalar::one().to_bytes(); // R1CS is a set of three sparse matrices A B C, where is a row for every // constraint and a column for every entry in z = (vars, 1, inputs) // An R1CS instance is satisfiable iff: // Az \circ Bz = Cz, where z = (vars, 1, inputs) // constraint 0 entries in (A,B,C) // constraint 0 is Z0 * Z0 - Z1 = 0. A.push((0, 0, one)); B.push((0, 0, one)); C.push((0, 1, one)); // constraint 1 entries in (A,B,C) // constraint 1 is Z1 * Z0 - Z2 = 0. A.push((1, 1, one)); B.push((1, 0, one)); C.push((1, 2, one)); // constraint 2 entries in (A,B,C) // constraint 2 is (Z2 + Z0) * 1 - Z3 = 0. A.push((2, 2, one)); A.push((2, 0, one)); B.push((2, num_vars, one)); C.push((2, 3, one)); // constraint 3 entries in (A,B,C) // constraint 3 is (Z3 + 5) * 1 - I0 = 0. A.push((3, 3, one)); A.push((3, num_vars, Scalar::from(5u32).to_bytes())); B.push((3, num_vars, one)); C.push((3, num_vars + 1, one)); let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap(); // compute a satisfying assignment let mut csprng: OsRng = OsRng; let z0 = Scalar::random(&mut csprng); let z1 = z0 * z0; // constraint 0 let z2 = z1 * z0; // constraint 1 let z3 = z2 + z0; // constraint 2 let i0 = z3 + Scalar::from(5u32); // constraint 3 // create a VarsAssignment let mut vars = vec![Scalar::zero().to_bytes(); num_vars]; vars[0] = z0.to_bytes(); vars[1] = z1.to_bytes(); vars[2] = z2.to_bytes(); vars[3] = z3.to_bytes(); let assignment_vars = VarsAssignment::new(&vars).unwrap(); // create an InputsAssignment let mut inputs = vec![Scalar::zero().to_bytes(); num_inputs]; inputs[0] = i0.to_bytes(); let assignment_inputs = InputsAssignment::new(&inputs).unwrap(); // check if the instance we created is satisfiable let res = inst.is_sat(&assignment_vars, &assignment_inputs); assert!(res.unwrap(), "should be satisfied"); ( num_cons, num_vars, num_inputs, num_non_zero_entries, inst, assignment_vars, assignment_inputs, ) } fn main() { // produce an R1CS instance let ( num_cons, num_vars, num_inputs, num_non_zero_entries, inst, assignment_vars, assignment_inputs, ) = produce_r1cs(); // produce public parameters let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries); // create a commitment to the R1CS instance let (comm, decomm) = SNARK::encode(&inst, &gens); // produce a proof of satisfiability let mut prover_transcript = Transcript::new(b"snark_example"); let proof = SNARK::prove( &inst, &decomm, assignment_vars, &assignment_inputs, &gens, &mut prover_transcript, ); // verify the proof of satisfiability let mut verifier_transcript = Transcript::new(b"snark_example"); assert!(proof .verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens) .is_ok()); println!("proof verification successful!"); }