You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

489 lines
16 KiB

#[allow(dead_code)]
use super::dense_mlpoly::DensePolynomial;
use super::dense_mlpoly::EqPolynomial;
use super::math::Math;
use super::scalar::Scalar;
use super::sumcheck::SumcheckInstanceProof;
use super::transcript::ProofTranscript;
use merlin::Transcript;
use serde::{Deserialize, Serialize};
#[derive(Debug)]
pub struct ProductCircuit {
left_vec: Vec<DensePolynomial>,
right_vec: Vec<DensePolynomial>,
}
impl ProductCircuit {
fn compute_layer(
inp_left: &DensePolynomial,
inp_right: &DensePolynomial,
) -> (DensePolynomial, DensePolynomial) {
let len = inp_left.len() + inp_right.len();
let outp_left = (0..len / 4)
.map(|i| &inp_left[i] * &inp_right[i])
.collect::<Vec<Scalar>>();
let outp_right = (len / 4..len / 2)
.map(|i| &inp_left[i] * &inp_right[i])
.collect::<Vec<Scalar>>();
(
DensePolynomial::new(outp_left),
DensePolynomial::new(outp_right),
)
}
pub fn new(poly: &DensePolynomial) -> Self {
let mut left_vec: Vec<DensePolynomial> = Vec::new();
let mut right_vec: Vec<DensePolynomial> = Vec::new();
let num_layers = poly.len().log2();
let (outp_left, outp_right) = poly.split(poly.len() / 2);
left_vec.push(outp_left);
right_vec.push(outp_right);
for i in 0..num_layers - 1 {
let (outp_left, outp_right) = ProductCircuit::compute_layer(&left_vec[i], &right_vec[i]);
left_vec.push(outp_left);
right_vec.push(outp_right);
}
ProductCircuit {
left_vec,
right_vec,
}
}
pub fn evaluate(&self) -> Scalar {
let len = self.left_vec.len();
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
}
}
pub struct DotProductCircuit {
left: DensePolynomial,
right: DensePolynomial,
weight: DensePolynomial,
}
impl DotProductCircuit {
pub fn new(left: DensePolynomial, right: DensePolynomial, weight: DensePolynomial) -> Self {
assert_eq!(left.len(), right.len());
assert_eq!(left.len(), weight.len());
DotProductCircuit {
left,
right,
weight,
}
}
pub fn evaluate(&self) -> Scalar {
(0..self.left.len())
.map(|i| &self.left[i] * &self.right[i] * &self.weight[i])
.sum()
}
pub fn split(&mut self) -> (DotProductCircuit, DotProductCircuit) {
let idx = self.left.len() / 2;
assert_eq!(idx * 2, self.left.len());
let (l1, l2) = self.left.split(idx);
let (r1, r2) = self.right.split(idx);
let (w1, w2) = self.weight.split(idx);
(
DotProductCircuit {
left: l1,
right: r1,
weight: w1,
},
DotProductCircuit {
left: l2,
right: r2,
weight: w2,
},
)
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProof {
pub proof: SumcheckInstanceProof,
pub claims: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProof {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[allow(dead_code)]
#[derive(Debug, Serialize, Deserialize)]
pub struct LayerProofBatched {
pub proof: SumcheckInstanceProof,
pub claims_prod_left: Vec<Scalar>,
pub claims_prod_right: Vec<Scalar>,
}
#[allow(dead_code)]
impl LayerProofBatched {
pub fn verify(
&self,
claim: Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
.unwrap()
}
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProof {
proof: Vec<LayerProof>,
}
#[derive(Debug, Serialize, Deserialize)]
pub struct ProductCircuitEvalProofBatched {
proof: Vec<LayerProofBatched>,
claims_dotp: (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>),
}
impl ProductCircuitEvalProof {
#![allow(dead_code)]
pub fn prove(
circuit: &mut ProductCircuit,
transcript: &mut Transcript,
) -> (Self, Scalar, Vec<Scalar>) {
let mut proof: Vec<LayerProof> = Vec::new();
let num_layers = circuit.left_vec.len();
let mut claim = circuit.evaluate();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
let len = circuit.left_vec[layer_id].len() + circuit.right_vec[layer_id].len();
let mut poly_C = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C.len(), len / 2);
let num_rounds_prod = poly_C.len().log2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let (proof_prod, rand_prod, claims_prod) = SumcheckInstanceProof::prove_cubic(
&claim,
num_rounds_prod,
&mut circuit.left_vec[layer_id],
&mut circuit.right_vec[layer_id],
&mut poly_C,
comb_func_prod,
transcript,
);
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = &claims_prod[0] + &r_layer * (&claims_prod[1] - &claims_prod[0]);
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof.push(LayerProof {
proof: proof_prod,
claims: claims_prod[0..claims_prod.len() - 1].to_vec(),
});
}
(ProductCircuitEvalProof { proof }, claim, rand)
}
pub fn verify(
&self,
eval: Scalar,
len: usize,
transcript: &mut Transcript,
) -> (Scalar, Vec<Scalar>) {
let num_layers = len.log2();
let mut claim = eval;
let mut rand: Vec<Scalar> = Vec::new();
let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
for i in 0..num_layers {
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod = &self.proof[i].claims;
transcript.append_scalar(b"claim_prod_left", &claims_prod[0]);
transcript.append_scalar(b"claim_prod_right", &claims_prod[1]);
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
assert_eq!(claims_prod[0] * claims_prod[1] * eq, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claim = (Scalar::one() - r_layer) * claims_prod[0] + r_layer * claims_prod[1];
num_rounds = num_rounds + 1;
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claim, rand)
}
}
impl ProductCircuitEvalProofBatched {
pub fn prove(
prod_circuit_vec: &mut Vec<&mut ProductCircuit>,
dotp_circuit_vec: &mut Vec<&mut DotProductCircuit>,
transcript: &mut Transcript,
) -> (Self, Vec<Scalar>) {
assert!(prod_circuit_vec.len() > 0);
let mut claims_dotp_final = (Vec::new(), Vec::new(), Vec::new());
let mut proof_layers: Vec<LayerProofBatched> = Vec::new();
let num_layers = prod_circuit_vec[0].left_vec.len();
let mut claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| prod_circuit_vec[i].evaluate())
.collect::<Vec<Scalar>>();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
// prepare paralell instance that share poly_C first
let len = prod_circuit_vec[0].left_vec[layer_id].len()
+ prod_circuit_vec[0].right_vec[layer_id].len();
let mut poly_C_par = DensePolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C_par.len(), len / 2);
let num_rounds_prod = poly_C_par.len().log2();
let comb_func_prod = |poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { poly_A_comp * poly_B_comp * poly_C_comp };
let mut poly_A_batched_par: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_par: Vec<&mut DensePolynomial> = Vec::new();
for prod_circuit in prod_circuit_vec.iter_mut() {
poly_A_batched_par.push(&mut prod_circuit.left_vec[layer_id]);
poly_B_batched_par.push(&mut prod_circuit.right_vec[layer_id])
}
let poly_vec_par = (
&mut poly_A_batched_par,
&mut poly_B_batched_par,
&mut poly_C_par,
);
// prepare sequential instances that don't share poly_C
let mut poly_A_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_B_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
let mut poly_C_batched_seq: Vec<&mut DensePolynomial> = Vec::new();
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
// add additional claims
for i in 0..dotp_circuit_vec.len() {
claims_to_verify.push(dotp_circuit_vec[i].evaluate());
assert_eq!(len / 2, dotp_circuit_vec[i].left.len());
assert_eq!(len / 2, dotp_circuit_vec[i].right.len());
assert_eq!(len / 2, dotp_circuit_vec[i].weight.len());
}
for dotp_circuit in dotp_circuit_vec.iter_mut() {
poly_A_batched_seq.push(&mut dotp_circuit.left);
poly_B_batched_seq.push(&mut dotp_circuit.right);
poly_C_batched_seq.push(&mut dotp_circuit.weight);
}
}
let poly_vec_seq = (
&mut poly_A_batched_seq,
&mut poly_B_batched_seq,
&mut poly_C_batched_seq,
);
// produce a fresh set of coeffs and a joint claim
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (proof, rand_prod, claims_prod, claims_dotp) = SumcheckInstanceProof::prove_cubic_batched(
&claim,
num_rounds_prod,
poly_vec_par,
poly_vec_seq,
&coeff_vec,
comb_func_prod,
transcript,
);
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
for i in 0..prod_circuit_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
if layer_id == 0 && dotp_circuit_vec.len() > 0 {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = claims_dotp;
for i in 0..dotp_circuit_vec.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
}
claims_dotp_final = (claims_dotp_left, claims_dotp_right, claims_dotp_weight);
}
// produce a random challenge to condense two claims into a single claim
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
.collect::<Vec<Scalar>>();
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof_layers.push(LayerProofBatched {
proof,
claims_prod_left,
claims_prod_right,
});
}
(
ProductCircuitEvalProofBatched {
proof: proof_layers,
claims_dotp: claims_dotp_final,
},
rand,
)
}
pub fn verify(
&self,
claims_prod_vec: &Vec<Scalar>,
claims_dotp_vec: &Vec<Scalar>,
len: usize,
transcript: &mut Transcript,
) -> (Vec<Scalar>, Vec<Scalar>, Vec<Scalar>) {
let num_layers = len.log2();
let mut rand: Vec<Scalar> = Vec::new();
let mut num_rounds = 0;
assert_eq!(self.proof.len(), num_layers);
let mut claims_to_verify = claims_prod_vec.clone();
let mut claims_to_verify_dotp: Vec<Scalar> = Vec::new();
for i in 0..num_layers {
if i == num_layers - 1 {
claims_to_verify.extend(claims_dotp_vec);
}
// produce random coefficients, one for each instance
let coeff_vec =
transcript.challenge_vector(b"rand_coeffs_next_layer", claims_to_verify.len());
// produce a joint claim
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.sum();
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript);
let claims_prod_left = &self.proof[i].claims_prod_left;
let claims_prod_right = &self.proof[i].claims_prod_right;
assert_eq!(claims_prod_left.len(), claims_prod_vec.len());
assert_eq!(claims_prod_right.len(), claims_prod_vec.len());
for i in 0..claims_prod_vec.len() {
transcript.append_scalar(b"claim_prod_left", &claims_prod_left[i]);
transcript.append_scalar(b"claim_prod_right", &claims_prod_right[i]);
}
assert_eq!(rand.len(), rand_prod.len());
let eq: Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (Scalar::one() - rand[i]) * (Scalar::one() - rand_prod[i])
})
.product();
let mut claim_expected: Scalar = (0..claims_prod_vec.len())
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
.sum();
// add claims from the dotp instances
if i == num_layers - 1 {
let num_prod_instances = claims_prod_vec.len();
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_left.len() {
transcript.append_scalar(b"claim_dotp_left", &claims_dotp_left[i]);
transcript.append_scalar(b"claim_dotp_right", &claims_dotp_right[i]);
transcript.append_scalar(b"claim_dotp_weight", &claims_dotp_weight[i]);
claim_expected = &claim_expected
+ &coeff_vec[i + num_prod_instances]
* &claims_dotp_left[i]
* &claims_dotp_right[i]
* &claims_dotp_weight[i];
}
}
assert_eq!(claim_expected, claim_last);
// produce a random challenge
let r_layer = transcript.challenge_scalar(b"challenge_r_layer");
claims_to_verify = (0..claims_prod_left.len())
.map(|i| &claims_prod_left[i] + &r_layer * (&claims_prod_right[i] - &claims_prod_left[i]))
.collect::<Vec<Scalar>>();
// add claims to verify for dotp circuit
if i == num_layers - 1 {
let (claims_dotp_left, claims_dotp_right, claims_dotp_weight) = &self.claims_dotp;
for i in 0..claims_dotp_vec.len() / 2 {
// combine left claims
let claim_left = &claims_dotp_left[2 * i]
+ &r_layer * (&claims_dotp_left[2 * i + 1] - &claims_dotp_left[2 * i]);
let claim_right = &claims_dotp_right[2 * i]
+ &r_layer * (&claims_dotp_right[2 * i + 1] - &claims_dotp_right[2 * i]);
let claim_weight = &claims_dotp_weight[2 * i]
+ &r_layer * (&claims_dotp_weight[2 * i + 1] - &claims_dotp_weight[2 * i]);
claims_to_verify_dotp.push(claim_left);
claims_to_verify_dotp.push(claim_right);
claims_to_verify_dotp.push(claim_weight);
}
}
num_rounds = num_rounds + 1;
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
(claims_to_verify, claims_to_verify_dotp, rand)
}
}