#![allow(clippy::too_many_arguments)]
|
|
use super::commitments::{Commitments, MultiCommitGens};
|
|
use super::errors::ProofVerifyError;
|
|
use super::group::{GroupElement, CompressedGroup, VartimeMultiscalarMul, CompressGroupElement, DecompressGroupElement};
|
|
use super::math::Math;
|
|
use super::nizk::{DotProductProofGens, DotProductProofLog};
|
|
use super::random::RandomTape;
|
|
use super::scalar::Scalar;
|
|
use super::transcript::{AppendToTranscript, ProofTranscript};
|
|
use core::ops::Index;
|
|
use merlin::Transcript;
|
|
use ark_serialize::*;
|
|
use ark_ff::{One,Zero};
|
|
|
|
|
|
|
|
#[cfg(feature = "multicore")]
|
|
use rayon::prelude::*;
|
|
|
|
#[derive(Debug)]
|
|
pub struct DensePolynomial {
|
|
num_vars: usize, // the number of variables in the multilinear polynomial
|
|
len: usize,
|
|
Z: Vec<Scalar>, // evaluations of the polynomial in all the 2^num_vars Boolean inputs
|
|
}
|
|
|
|
pub struct PolyCommitmentGens {
|
|
pub gens: DotProductProofGens,
|
|
}
|
|
|
|
impl PolyCommitmentGens {
|
|
// the number of variables in the multilinear polynomial
|
|
pub fn new(num_vars: usize, label: &'static [u8]) -> PolyCommitmentGens {
|
|
let (_left, right) = EqPolynomial::compute_factored_lens(num_vars);
|
|
let gens = DotProductProofGens::new(right.pow2(), label);
|
|
PolyCommitmentGens { gens }
|
|
}
|
|
}
|
|
|
|
pub struct PolyCommitmentBlinds {
|
|
blinds: Vec<Scalar>,
|
|
}
|
|
|
|
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
|
|
pub struct PolyCommitment {
|
|
C: Vec<CompressedGroup>,
|
|
}
|
|
|
|
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
|
|
pub struct ConstPolyCommitment {
|
|
C: CompressedGroup,
|
|
}
|
|
|
|
pub struct EqPolynomial {
|
|
r: Vec<Scalar>,
|
|
}
|
|
|
|
impl EqPolynomial {
|
|
pub fn new(r: Vec<Scalar>) -> Self {
|
|
EqPolynomial { r }
|
|
}
|
|
|
|
pub fn evaluate(&self, rx: &[Scalar]) -> Scalar {
|
|
assert_eq!(self.r.len(), rx.len());
|
|
(0..rx.len())
|
|
.map(|i| self.r[i] * rx[i] + (Scalar::one() - self.r[i]) * (Scalar::one() - rx[i]))
|
|
.product()
|
|
}
|
|
|
|
pub fn evals(&self) -> Vec<Scalar> {
|
|
let ell = self.r.len();
|
|
|
|
let mut evals: Vec<Scalar> = vec![Scalar::one(); ell.pow2()];
|
|
let mut size = 1;
|
|
for j in 0..ell {
|
|
// in each iteration, we double the size of chis
|
|
size *= 2;
|
|
for i in (0..size).rev().step_by(2) {
|
|
// copy each element from the prior iteration twice
|
|
let scalar = evals[i / 2];
|
|
evals[i] = scalar * self.r[j];
|
|
evals[i - 1] = scalar - evals[i];
|
|
}
|
|
}
|
|
evals
|
|
}
|
|
|
|
pub fn compute_factored_lens(ell: usize) -> (usize, usize) {
|
|
(ell / 2, ell - ell / 2)
|
|
}
|
|
|
|
pub fn compute_factored_evals(&self) -> (Vec<Scalar>, Vec<Scalar>) {
|
|
let ell = self.r.len();
|
|
let (left_num_vars, _right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
|
|
|
let L = EqPolynomial::new(self.r[..left_num_vars].to_vec()).evals();
|
|
let R = EqPolynomial::new(self.r[left_num_vars..ell].to_vec()).evals();
|
|
|
|
(L, R)
|
|
}
|
|
}
|
|
|
|
pub struct IdentityPolynomial {
|
|
size_point: usize,
|
|
}
|
|
|
|
impl IdentityPolynomial {
|
|
pub fn new(size_point: usize) -> Self {
|
|
IdentityPolynomial { size_point }
|
|
}
|
|
|
|
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
|
let len = r.len();
|
|
assert_eq!(len, self.size_point);
|
|
(0..len)
|
|
.map(|i| Scalar::from((len - i - 1).pow2() as u64) * r[i])
|
|
.sum()
|
|
}
|
|
}
|
|
|
|
impl DensePolynomial {
|
|
pub fn new(Z: Vec<Scalar>) -> Self {
|
|
DensePolynomial {
|
|
num_vars: Z.len().log_2(),
|
|
len: Z.len(),
|
|
Z,
|
|
}
|
|
}
|
|
|
|
pub fn get_num_vars(&self) -> usize {
|
|
self.num_vars
|
|
}
|
|
|
|
pub fn len(&self) -> usize {
|
|
self.len
|
|
}
|
|
|
|
pub fn clone(&self) -> DensePolynomial {
|
|
DensePolynomial::new(self.Z[0..self.len].to_vec())
|
|
}
|
|
|
|
pub fn split(&self, idx: usize) -> (DensePolynomial, DensePolynomial) {
|
|
assert!(idx < self.len());
|
|
(
|
|
DensePolynomial::new(self.Z[..idx].to_vec()),
|
|
DensePolynomial::new(self.Z[idx..2 * idx].to_vec()),
|
|
)
|
|
}
|
|
|
|
#[cfg(feature = "multicore")]
|
|
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
|
|
let L_size = blinds.len();
|
|
let R_size = self.Z.len() / L_size;
|
|
assert_eq!(L_size * R_size, self.Z.len());
|
|
let C = (0..L_size)
|
|
.into_par_iter()
|
|
.map(|i| {
|
|
self.Z[R_size * i..R_size * (i + 1)]
|
|
.commit(&blinds[i], gens)
|
|
.compress()
|
|
})
|
|
.collect();
|
|
PolyCommitment { C }
|
|
}
|
|
|
|
#[cfg(not(feature = "multicore"))]
|
|
fn commit_inner(&self, blinds: &[Scalar], gens: &MultiCommitGens) -> PolyCommitment {
|
|
let L_size = blinds.len();
|
|
let R_size = self.Z.len() / L_size;
|
|
assert_eq!(L_size * R_size, self.Z.len());
|
|
let C = (0..L_size)
|
|
.map(|i| {
|
|
self.Z[R_size * i..R_size * (i + 1)]
|
|
.commit(&blinds[i], gens)
|
|
.compress()
|
|
})
|
|
.collect();
|
|
PolyCommitment { C }
|
|
}
|
|
|
|
pub fn commit(
|
|
&self,
|
|
gens: &PolyCommitmentGens,
|
|
random_tape: Option<&mut RandomTape>,
|
|
) -> (PolyCommitment, PolyCommitmentBlinds) {
|
|
let n = self.Z.len();
|
|
let ell = self.get_num_vars();
|
|
assert_eq!(n, ell.pow2());
|
|
|
|
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(ell);
|
|
let L_size = left_num_vars.pow2();
|
|
let R_size = right_num_vars.pow2();
|
|
assert_eq!(L_size * R_size, n);
|
|
|
|
let blinds = if let Some(t) = random_tape {
|
|
PolyCommitmentBlinds {
|
|
blinds: t.random_vector(b"poly_blinds", L_size),
|
|
}
|
|
} else {
|
|
PolyCommitmentBlinds {
|
|
blinds: vec![Scalar::zero(); L_size],
|
|
}
|
|
};
|
|
|
|
(self.commit_inner(&blinds.blinds, &gens.gens.gens_n), blinds)
|
|
}
|
|
|
|
pub fn bound(&self, L: &[Scalar]) -> Vec<Scalar> {
|
|
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(self.get_num_vars());
|
|
let L_size = left_num_vars.pow2();
|
|
let R_size = right_num_vars.pow2();
|
|
(0..R_size)
|
|
.map(|i| (0..L_size).map(|j| L[j] * self.Z[j * R_size + i]).sum())
|
|
.collect()
|
|
}
|
|
|
|
pub fn bound_poly_var_top(&mut self, r: &Scalar) {
|
|
let n = self.len() / 2;
|
|
for i in 0..n {
|
|
self.Z[i] = self.Z[i] + (self.Z[i + n] - self.Z[i]) * r;
|
|
}
|
|
self.num_vars -= 1;
|
|
self.len = n;
|
|
}
|
|
|
|
pub fn bound_poly_var_bot(&mut self, r: &Scalar) {
|
|
let n = self.len() / 2;
|
|
for i in 0..n {
|
|
self.Z[i] = self.Z[2 * i] + (self.Z[2 * i + 1] - self.Z[2 * i]) * r;
|
|
}
|
|
self.num_vars -= 1;
|
|
self.len = n;
|
|
}
|
|
|
|
// returns Z(r) in O(n) time
|
|
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
|
// r must have a value for each variable
|
|
assert_eq!(r.len(), self.get_num_vars());
|
|
let chis = EqPolynomial::new(r.to_vec()).evals();
|
|
assert_eq!(chis.len(), self.Z.len());
|
|
DotProductProofLog::compute_dotproduct(&self.Z, &chis)
|
|
}
|
|
|
|
fn vec(&self) -> &Vec<Scalar> {
|
|
&self.Z
|
|
}
|
|
|
|
pub fn extend(&mut self, other: &DensePolynomial) {
|
|
// TODO: allow extension even when some vars are bound
|
|
assert_eq!(self.Z.len(), self.len);
|
|
let other_vec = other.vec();
|
|
assert_eq!(other_vec.len(), self.len);
|
|
self.Z.extend(other_vec);
|
|
self.num_vars += 1;
|
|
self.len *= 2;
|
|
assert_eq!(self.Z.len(), self.len);
|
|
}
|
|
|
|
pub fn merge<'a, I>(polys: I) -> DensePolynomial
|
|
where
|
|
I: IntoIterator<Item = &'a DensePolynomial>,
|
|
{
|
|
let mut Z: Vec<Scalar> = Vec::new();
|
|
for poly in polys.into_iter() {
|
|
Z.extend(poly.vec());
|
|
}
|
|
|
|
// pad the polynomial with zero polynomial at the end
|
|
Z.resize(Z.len().next_power_of_two(), Scalar::zero());
|
|
|
|
DensePolynomial::new(Z)
|
|
}
|
|
|
|
pub fn from_usize(Z: &[usize]) -> Self {
|
|
DensePolynomial::new(
|
|
(0..Z.len())
|
|
.map(|i| Scalar::from(Z[i] as u64))
|
|
.collect::<Vec<Scalar>>(),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Index<usize> for DensePolynomial {
|
|
type Output = Scalar;
|
|
|
|
#[inline(always)]
|
|
fn index(&self, _index: usize) -> &Scalar {
|
|
&(self.Z[_index])
|
|
}
|
|
}
|
|
|
|
impl AppendToTranscript for PolyCommitment {
|
|
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
|
transcript.append_message(label, b"poly_commitment_begin");
|
|
for i in 0..self.C.len() {
|
|
transcript.append_point(b"poly_commitment_share", &self.C[i]);
|
|
}
|
|
transcript.append_message(label, b"poly_commitment_end");
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, CanonicalSerialize, CanonicalDeserialize)]
|
|
pub struct PolyEvalProof {
|
|
proof: DotProductProofLog,
|
|
}
|
|
|
|
impl PolyEvalProof {
|
|
fn protocol_name() -> &'static [u8] {
|
|
b"polynomial evaluation proof"
|
|
}
|
|
|
|
pub fn prove(
|
|
poly: &DensePolynomial,
|
|
blinds_opt: Option<&PolyCommitmentBlinds>,
|
|
r: &[Scalar], // point at which the polynomial is evaluated
|
|
Zr: &Scalar, // evaluation of \widetilde{Z}(r)
|
|
blind_Zr_opt: Option<&Scalar>, // specifies a blind for Zr
|
|
gens: &PolyCommitmentGens,
|
|
transcript: &mut Transcript,
|
|
random_tape: &mut RandomTape,
|
|
) -> (PolyEvalProof, CompressedGroup) {
|
|
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
|
|
|
// assert vectors are of the right size
|
|
assert_eq!(poly.get_num_vars(), r.len());
|
|
|
|
let (left_num_vars, right_num_vars) = EqPolynomial::compute_factored_lens(r.len());
|
|
let L_size = left_num_vars.pow2();
|
|
let R_size = right_num_vars.pow2();
|
|
|
|
let default_blinds = PolyCommitmentBlinds {
|
|
blinds: vec![Scalar::zero(); L_size],
|
|
};
|
|
let blinds = blinds_opt.map_or(&default_blinds, |p| p);
|
|
|
|
assert_eq!(blinds.blinds.len(), L_size);
|
|
|
|
let zero = Scalar::zero();
|
|
let blind_Zr = blind_Zr_opt.map_or(&zero, |p| p);
|
|
|
|
// compute the L and R vectors
|
|
let eq = EqPolynomial::new(r.to_vec());
|
|
let (L, R) = eq.compute_factored_evals();
|
|
assert_eq!(L.len(), L_size);
|
|
assert_eq!(R.len(), R_size);
|
|
|
|
// compute the vector underneath L*Z and the L*blinds
|
|
// compute vector-matrix product between L and Z viewed as a matrix
|
|
let LZ = poly.bound(&L);
|
|
let LZ_blind: Scalar = (0..L.len()).map(|i| blinds.blinds[i] * L[i]).sum();
|
|
|
|
// a dot product proof of size R_size
|
|
let (proof, _C_LR, C_Zr_prime) = DotProductProofLog::prove(
|
|
&gens.gens,
|
|
transcript,
|
|
random_tape,
|
|
&LZ,
|
|
&LZ_blind,
|
|
&R,
|
|
Zr,
|
|
blind_Zr,
|
|
);
|
|
|
|
(PolyEvalProof { proof }, C_Zr_prime)
|
|
}
|
|
|
|
pub fn verify(
|
|
&self,
|
|
gens: &PolyCommitmentGens,
|
|
transcript: &mut Transcript,
|
|
r: &[Scalar], // point at which the polynomial is evaluated
|
|
C_Zr: &CompressedGroup, // commitment to \widetilde{Z}(r)
|
|
comm: &PolyCommitment,
|
|
) -> Result<(), ProofVerifyError> {
|
|
transcript.append_protocol_name(PolyEvalProof::protocol_name());
|
|
|
|
// compute L and R
|
|
let eq = EqPolynomial::new(r.to_vec());
|
|
let (L, R) = eq.compute_factored_evals();
|
|
|
|
// compute a weighted sum of commitments and L
|
|
let C_decompressed = comm.C.iter().map(|pt| GroupElement::decompress(pt).unwrap()).collect::<Vec<GroupElement>>();
|
|
|
|
let C_LZ = GroupElement::vartime_multiscalar_mul(&L, C_decompressed.as_slice()).compress();
|
|
|
|
self
|
|
.proof
|
|
.verify(R.len(), &gens.gens, transcript, &R, &C_LZ, C_Zr)
|
|
}
|
|
|
|
pub fn verify_plain(
|
|
&self,
|
|
gens: &PolyCommitmentGens,
|
|
transcript: &mut Transcript,
|
|
r: &[Scalar], // point at which the polynomial is evaluated
|
|
Zr: &Scalar, // evaluation \widetilde{Z}(r)
|
|
comm: &PolyCommitment,
|
|
) -> Result<(), ProofVerifyError> {
|
|
// compute a commitment to Zr with a blind of zero
|
|
let C_Zr = Zr.commit(&Scalar::zero(), &gens.gens.gens_1).compress();
|
|
|
|
self.verify(gens, transcript, r, &C_Zr, comm)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use ark_std::{UniformRand};
|
|
|
|
fn evaluate_with_LR(Z: &[Scalar], r: &[Scalar]) -> Scalar {
|
|
let eq = EqPolynomial::new(r.to_vec());
|
|
let (L, R) = eq.compute_factored_evals();
|
|
|
|
let ell = r.len();
|
|
// ensure ell is even
|
|
assert!(ell % 2 == 0);
|
|
// compute n = 2^\ell
|
|
let n = ell.pow2();
|
|
// compute m = sqrt(n) = 2^{\ell/2}
|
|
let m = n.square_root();
|
|
|
|
// compute vector-matrix product between L and Z viewed as a matrix
|
|
let LZ = (0..m)
|
|
.map(|i| (0..m).map(|j| L[j] * Z[j * m + i]).sum())
|
|
.collect::<Vec<Scalar>>();
|
|
|
|
// compute dot product between LZ and R
|
|
DotProductProofLog::compute_dotproduct(&LZ, &R)
|
|
}
|
|
|
|
#[test]
|
|
fn check_polynomial_evaluation() {
|
|
// Z = [1, 2, 1, 4]
|
|
let Z = vec![
|
|
Scalar::one(),
|
|
Scalar::from(2),
|
|
Scalar::from(1),
|
|
Scalar::from(4)
|
|
];
|
|
|
|
// r = [4,3]
|
|
let r = vec![Scalar::from(4), Scalar::from(3)];
|
|
|
|
let eval_with_LR = evaluate_with_LR(&Z, &r);
|
|
let poly = DensePolynomial::new(Z);
|
|
|
|
let eval = poly.evaluate(&r);
|
|
assert_eq!(eval, Scalar::from(28));
|
|
assert_eq!(eval_with_LR, eval);
|
|
}
|
|
|
|
pub fn compute_factored_chis_at_r(r: &[Scalar]) -> (Vec<Scalar>, Vec<Scalar>) {
|
|
let mut L: Vec<Scalar> = Vec::new();
|
|
let mut R: Vec<Scalar> = Vec::new();
|
|
|
|
let ell = r.len();
|
|
assert!(ell % 2 == 0); // ensure ell is even
|
|
let n = ell.pow2();
|
|
let m = n.square_root();
|
|
|
|
// compute row vector L
|
|
for i in 0..m {
|
|
let mut chi_i = Scalar::one();
|
|
for j in 0..ell / 2 {
|
|
let bit_j = ((m * i) & (1 << (r.len() - j - 1))) > 0;
|
|
if bit_j {
|
|
chi_i *= r[j];
|
|
} else {
|
|
chi_i *= Scalar::one() - r[j];
|
|
}
|
|
}
|
|
L.push(chi_i);
|
|
}
|
|
|
|
// compute column vector R
|
|
for i in 0..m {
|
|
let mut chi_i = Scalar::one();
|
|
for j in ell / 2..ell {
|
|
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
|
if bit_j {
|
|
chi_i *= r[j];
|
|
} else {
|
|
chi_i *= Scalar::one() - r[j];
|
|
}
|
|
}
|
|
R.push(chi_i);
|
|
}
|
|
(L, R)
|
|
}
|
|
|
|
pub fn compute_chis_at_r(r: &[Scalar]) -> Vec<Scalar> {
|
|
let ell = r.len();
|
|
let n = ell.pow2();
|
|
let mut chis: Vec<Scalar> = Vec::new();
|
|
for i in 0..n {
|
|
let mut chi_i = Scalar::one();
|
|
for j in 0..r.len() {
|
|
let bit_j = (i & (1 << (r.len() - j - 1))) > 0;
|
|
if bit_j {
|
|
chi_i *= r[j];
|
|
} else {
|
|
chi_i *= Scalar::one() - r[j];
|
|
}
|
|
}
|
|
chis.push(chi_i);
|
|
}
|
|
chis
|
|
}
|
|
|
|
pub fn compute_outerproduct(L: Vec<Scalar>, R: Vec<Scalar>) -> Vec<Scalar> {
|
|
assert_eq!(L.len(), R.len());
|
|
(0..L.len())
|
|
.map(|i| (0..R.len()).map(|j| L[i] * R[j]).collect::<Vec<Scalar>>())
|
|
.collect::<Vec<Vec<Scalar>>>()
|
|
.into_iter()
|
|
.flatten()
|
|
.collect::<Vec<Scalar>>()
|
|
}
|
|
|
|
#[test]
|
|
fn check_memoized_chis() {
|
|
let mut rng = ark_std::rand::thread_rng();
|
|
|
|
let s = 10;
|
|
let mut r: Vec<Scalar> = Vec::new();
|
|
for _i in 0..s {
|
|
r.push(Scalar::rand(&mut rng));
|
|
}
|
|
let chis = tests::compute_chis_at_r(&r);
|
|
let chis_m = EqPolynomial::new(r).evals();
|
|
assert_eq!(chis, chis_m);
|
|
}
|
|
|
|
#[test]
|
|
fn check_factored_chis() {
|
|
let mut rng = ark_std::rand::thread_rng();
|
|
|
|
let s = 10;
|
|
let mut r: Vec<Scalar> = Vec::new();
|
|
for _i in 0..s {
|
|
r.push(Scalar::rand(&mut rng));
|
|
}
|
|
let chis = EqPolynomial::new(r.clone()).evals();
|
|
let (L, R) = EqPolynomial::new(r).compute_factored_evals();
|
|
let O = compute_outerproduct(L, R);
|
|
assert_eq!(chis, O);
|
|
}
|
|
|
|
#[test]
|
|
fn check_memoized_factored_chis() {
|
|
let mut rng = ark_std::rand::thread_rng();
|
|
|
|
let s = 10;
|
|
let mut r: Vec<Scalar> = Vec::new();
|
|
for _i in 0..s {
|
|
r.push(Scalar::rand(&mut rng));
|
|
}
|
|
let (L, R) = tests::compute_factored_chis_at_r(&r);
|
|
let eq = EqPolynomial::new(r);
|
|
let (L2, R2) = eq.compute_factored_evals();
|
|
assert_eq!(L, L2);
|
|
assert_eq!(R, R2);
|
|
}
|
|
|
|
#[test]
|
|
fn check_polynomial_commit() {
|
|
let Z = vec![
|
|
Scalar::from(1),
|
|
Scalar::from(2),
|
|
Scalar::from(1),
|
|
Scalar::from(4)
|
|
];
|
|
let poly = DensePolynomial::new(Z);
|
|
|
|
// r = [4,3]
|
|
let r = vec![Scalar::from(4), Scalar::from(3)];
|
|
let eval = poly.evaluate(&r);
|
|
assert_eq!(eval, Scalar::from(28));
|
|
|
|
let gens = PolyCommitmentGens::new(poly.get_num_vars(), b"test-two");
|
|
let (poly_commitment, blinds) = poly.commit(&gens, None);
|
|
|
|
let mut random_tape = RandomTape::new(b"proof");
|
|
let mut prover_transcript = Transcript::new(b"example");
|
|
let (proof, C_Zr) = PolyEvalProof::prove(
|
|
&poly,
|
|
Some(&blinds),
|
|
&r,
|
|
&eval,
|
|
None,
|
|
&gens,
|
|
&mut prover_transcript,
|
|
&mut random_tape,
|
|
);
|
|
|
|
let mut verifier_transcript = Transcript::new(b"example");
|
|
assert!(proof
|
|
.verify(&gens, &mut verifier_transcript, &r, &C_Zr, &poly_commitment)
|
|
.is_ok());
|
|
}
|
|
}
|