You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

468 lines
14 KiB

#![allow(clippy::too_many_arguments)]
use crate::constraints::{VerifierCircuit, VerifierConfig};
use crate::group::{Fq, Fr};
use crate::math::Math;
use crate::parameters::poseidon_params;
use crate::poseidon_transcript::PoseidonTranscript;
use crate::sumcheck::SumcheckInstanceProof;
use ark_bw6_761::BW6_761 as P;
use super::commitments::MultiCommitGens;
use super::dense_mlpoly::{DensePolynomial, EqPolynomial, PolyCommitmentGens};
use super::errors::ProofVerifyError;
use super::r1csinstance::R1CSInstance;
use super::scalar::Scalar;
use super::sparse_mlpoly::{SparsePolyEntry, SparsePolynomial};
use super::timer::Timer;
use super::transcript::ProofTranscript;
use ark_crypto_primitives::{CircuitSpecificSetupSNARK, SNARK};
use ark_groth16::Groth16;
use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystem};
use ark_serialize::*;
use ark_std::{One, Zero};
use std::time::Instant;
#[derive(CanonicalSerialize, CanonicalDeserialize, Debug)]
pub struct R1CSProof {
sc_proof_phase1: SumcheckInstanceProof,
claims_phase2: (Scalar, Scalar, Scalar, Scalar),
// pok_claims_phase2: (KnowledgeProof, ProductProof),
// proof_eq_sc_phase1: EqualityProof,
sc_proof_phase2: SumcheckInstanceProof,
eval_vars_at_ry: Scalar,
// proof_eval_vars_at_ry: PolyEvalProof,
// proof_eq_sc_phase2: EqualityProof,
}
#[derive(Clone)]
pub struct R1CSSumcheckGens {
gens_1: MultiCommitGens,
gens_3: MultiCommitGens,
gens_4: MultiCommitGens,
}
// TODO: fix passing gens_1_ref
impl R1CSSumcheckGens {
pub fn new(label: &'static [u8], gens_1_ref: &MultiCommitGens) -> Self {
let gens_1 = gens_1_ref.clone();
let gens_3 = MultiCommitGens::new(3, label);
let gens_4 = MultiCommitGens::new(4, label);
R1CSSumcheckGens {
gens_1,
gens_3,
gens_4,
}
}
}
#[derive(Clone)]
pub struct R1CSGens {
gens_sc: R1CSSumcheckGens,
gens_pc: PolyCommitmentGens,
}
impl R1CSGens {
pub fn new(label: &'static [u8], _num_cons: usize, num_vars: usize) -> Self {
let num_poly_vars = num_vars.log_2();
let gens_pc = PolyCommitmentGens::new(num_poly_vars, label);
let gens_sc = R1CSSumcheckGens::new(label, &gens_pc.gens.gens_1);
R1CSGens { gens_sc, gens_pc }
}
}
impl R1CSProof {
fn prove_phase_one(
num_rounds: usize,
evals_tau: &mut DensePolynomial,
evals_Az: &mut DensePolynomial,
evals_Bz: &mut DensePolynomial,
evals_Cz: &mut DensePolynomial,
transcript: &mut PoseidonTranscript,
) -> (SumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>) {
let comb_func =
|poly_tau_comp: &Scalar,
poly_A_comp: &Scalar,
poly_B_comp: &Scalar,
poly_C_comp: &Scalar|
-> Scalar { (*poly_tau_comp) * ((*poly_A_comp) * poly_B_comp - poly_C_comp) };
let (sc_proof_phase_one, r, claims) = SumcheckInstanceProof::prove_cubic_with_additive_term(
&Scalar::zero(), // claim is zero
num_rounds,
evals_tau,
evals_Az,
evals_Bz,
evals_Cz,
comb_func,
transcript,
);
(sc_proof_phase_one, r, claims)
}
fn prove_phase_two(
num_rounds: usize,
claim: &Scalar,
evals_z: &mut DensePolynomial,
evals_ABC: &mut DensePolynomial,
transcript: &mut PoseidonTranscript,
) -> (SumcheckInstanceProof, Vec<Scalar>, Vec<Scalar>) {
let comb_func =
|poly_A_comp: &Scalar, poly_B_comp: &Scalar| -> Scalar { (*poly_A_comp) * poly_B_comp };
let (sc_proof_phase_two, r, claims) = SumcheckInstanceProof::prove_quad(
claim, num_rounds, evals_z, evals_ABC, comb_func, transcript,
);
(sc_proof_phase_two, r, claims)
}
fn protocol_name() -> &'static [u8] {
b"R1CS proof"
}
pub fn prove(
inst: &R1CSInstance,
vars: Vec<Scalar>,
input: &[Scalar],
transcript: &mut PoseidonTranscript,
) -> (R1CSProof, Vec<Scalar>, Vec<Scalar>) {
let timer_prove = Timer::new("R1CSProof::prove");
// we currently require the number of |inputs| + 1 to be at most number of vars
assert!(input.len() < vars.len());
let c = transcript.challenge_scalar();
transcript.new_from_state(&c);
transcript.append_scalar_vector(&input.to_vec());
let poly_vars = DensePolynomial::new(vars.clone());
let timer_sc_proof_phase1 = Timer::new("prove_sc_phase_one");
// append input to variables to create a single vector z
let z = {
let num_inputs = input.len();
let num_vars = vars.len();
let mut z = vars;
z.extend(&vec![Scalar::one()]); // add constant term in z
z.extend(input);
z.extend(&vec![Scalar::zero(); num_vars - num_inputs - 1]); // we will pad with zeros
z
};
// derive the verifier's challenge tau
let (num_rounds_x, num_rounds_y) = (inst.get_num_cons().log_2(), z.len().log_2());
let tau = transcript.challenge_vector(num_rounds_x);
// compute the initial evaluation table for R(\tau, x)
let mut poly_tau = DensePolynomial::new(EqPolynomial::new(tau).evals());
let (mut poly_Az, mut poly_Bz, mut poly_Cz) =
inst.multiply_vec(inst.get_num_cons(), z.len(), &z);
let (sc_proof_phase1, rx, _claims_phase1) = R1CSProof::prove_phase_one(
num_rounds_x,
&mut poly_tau,
&mut poly_Az,
&mut poly_Bz,
&mut poly_Cz,
transcript,
);
assert_eq!(poly_tau.len(), 1);
assert_eq!(poly_Az.len(), 1);
assert_eq!(poly_Bz.len(), 1);
assert_eq!(poly_Cz.len(), 1);
timer_sc_proof_phase1.stop();
let (tau_claim, Az_claim, Bz_claim, Cz_claim) =
(&poly_tau[0], &poly_Az[0], &poly_Bz[0], &poly_Cz[0]);
let prod_Az_Bz_claims = (*Az_claim) * Bz_claim;
// prove the final step of sum-check #1
let taus_bound_rx = tau_claim;
let _claim_post_phase1 = ((*Az_claim) * Bz_claim - Cz_claim) * taus_bound_rx;
let timer_sc_proof_phase2 = Timer::new("prove_sc_phase_two");
// combine the three claims into a single claim
let r_A = transcript.challenge_scalar();
let r_B = transcript.challenge_scalar();
let r_C = transcript.challenge_scalar();
let claim_phase2 = r_A * Az_claim + r_B * Bz_claim + r_C * Cz_claim;
let evals_ABC = {
// compute the initial evaluation table for R(\tau, x)
let evals_rx = EqPolynomial::new(rx.clone()).evals();
let (evals_A, evals_B, evals_C) =
inst.compute_eval_table_sparse(inst.get_num_cons(), z.len(), &evals_rx);
assert_eq!(evals_A.len(), evals_B.len());
assert_eq!(evals_A.len(), evals_C.len());
(0..evals_A.len())
.map(|i| r_A * evals_A[i] + r_B * evals_B[i] + r_C * evals_C[i])
.collect::<Vec<Scalar>>()
};
// another instance of the sum-check protocol
let (sc_proof_phase2, ry, _claims_phase2) = R1CSProof::prove_phase_two(
num_rounds_y,
&claim_phase2,
&mut DensePolynomial::new(z),
&mut DensePolynomial::new(evals_ABC),
transcript,
);
timer_sc_proof_phase2.stop();
let timer_polyeval = Timer::new("polyeval");
let eval_vars_at_ry = poly_vars.evaluate(&ry[1..].to_vec());
timer_polyeval.stop();
timer_prove.stop();
(
R1CSProof {
sc_proof_phase1,
claims_phase2: (*Az_claim, *Bz_claim, *Cz_claim, prod_Az_Bz_claims),
sc_proof_phase2,
eval_vars_at_ry,
},
rx,
ry,
)
}
pub fn verify_groth16(
&self,
num_vars: usize,
num_cons: usize,
input: &[Scalar],
evals: &(Scalar, Scalar, Scalar),
transcript: &mut PoseidonTranscript,
) -> Result<(u128, u128, u128), ProofVerifyError> {
let c = transcript.challenge_scalar();
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
//remaining inputs
input_as_sparse_poly_entries.extend(
(0..input.len())
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
.collect::<Vec<SparsePolyEntry>>(),
);
let n = num_vars;
let input_as_sparse_poly =
SparsePolynomial::new(n.log_2() as usize, input_as_sparse_poly_entries);
let config = VerifierConfig {
num_vars: num_vars,
num_cons: num_cons,
input: input.to_vec(),
evals: *evals,
params: poseidon_params(),
prev_challenge: c,
claims_phase2: self.claims_phase2,
polys_sc1: self.sc_proof_phase1.polys.clone(),
polys_sc2: self.sc_proof_phase2.polys.clone(),
eval_vars_at_ry: self.eval_vars_at_ry,
input_as_sparse_poly: input_as_sparse_poly,
};
let mut rng = ark_std::test_rng();
let start = Instant::now();
let circuit = VerifierCircuit::new(&config, &mut rng).unwrap();
let dp1 = start.elapsed().as_millis();
let start = Instant::now();
let (pk, vk) = Groth16::<P>::setup(circuit.clone(), &mut rng).unwrap();
let ds = start.elapsed().as_millis();
let start = Instant::now();
let proof = Groth16::<P>::prove(&pk, circuit.clone(), &mut rng).unwrap();
let dp2 = start.elapsed().as_millis();
let start = Instant::now();
let is_verified = Groth16::<P>::verify(&vk, &[], &proof).unwrap();
let dv = start.elapsed().as_millis();
assert!(is_verified);
Ok((ds, dp1 + dp2, dv))
}
pub fn circuit_size(
&self,
num_vars: usize,
num_cons: usize,
input: &[Scalar],
evals: &(Scalar, Scalar, Scalar),
transcript: &mut PoseidonTranscript,
) -> Result<usize, ProofVerifyError> {
let c = transcript.challenge_scalar();
let mut input_as_sparse_poly_entries = vec![SparsePolyEntry::new(0, Scalar::one())];
//remaining inputs
input_as_sparse_poly_entries.extend(
(0..input.len())
.map(|i| SparsePolyEntry::new(i + 1, input[i]))
.collect::<Vec<SparsePolyEntry>>(),
);
let n = num_vars;
let input_as_sparse_poly =
SparsePolynomial::new(n.log_2() as usize, input_as_sparse_poly_entries);
let config = VerifierConfig {
num_vars: num_vars,
num_cons: num_cons,
input: input.to_vec(),
evals: *evals,
params: poseidon_params(),
prev_challenge: c,
claims_phase2: self.claims_phase2,
polys_sc1: self.sc_proof_phase1.polys.clone(),
polys_sc2: self.sc_proof_phase2.polys.clone(),
eval_vars_at_ry: self.eval_vars_at_ry,
input_as_sparse_poly: input_as_sparse_poly,
};
let mut rng = ark_std::test_rng();
let circuit = VerifierCircuit::new(&config, &mut rng).unwrap();
let nc_inner = verify_constraints_inner(circuit.clone(), &num_cons);
let nc_outer = verify_constraints_outer(circuit.clone(), &num_cons);
Ok(nc_inner + nc_outer)
}
}
fn verify_constraints_outer(circuit: VerifierCircuit, _num_cons: &usize) -> usize {
let cs = ConstraintSystem::<Fq>::new_ref();
circuit.generate_constraints(cs.clone()).unwrap();
assert!(cs.is_satisfied().unwrap());
cs.num_constraints()
}
fn verify_constraints_inner(circuit: VerifierCircuit, _num_cons: &usize) -> usize {
let cs = ConstraintSystem::<Fr>::new_ref();
circuit
.inner_circuit
.generate_constraints(cs.clone())
.unwrap();
assert!(cs.is_satisfied().unwrap());
cs.num_constraints()
}
#[cfg(test)]
mod tests {
use crate::parameters::poseidon_params;
use super::*;
use ark_std::UniformRand;
fn produce_tiny_r1cs() -> (R1CSInstance, Vec<Scalar>, Vec<Scalar>) {
// three constraints over five variables Z1, Z2, Z3, Z4, and Z5
// rounded to the nearest power of two
let num_cons = 128;
let num_vars = 256;
let num_inputs = 2;
// encode the above constraints into three matrices
let mut A: Vec<(usize, usize, Scalar)> = Vec::new();
let mut B: Vec<(usize, usize, Scalar)> = Vec::new();
let mut C: Vec<(usize, usize, Scalar)> = Vec::new();
let one = Scalar::one();
// constraint 0 entries
// (Z1 + Z2) * I0 - Z3 = 0;
A.push((0, 0, one));
A.push((0, 1, one));
B.push((0, num_vars + 1, one));
C.push((0, 2, one));
// constraint 1 entries
// (Z1 + I1) * (Z3) - Z4 = 0
A.push((1, 0, one));
A.push((1, num_vars + 2, one));
B.push((1, 2, one));
C.push((1, 3, one));
// constraint 3 entries
// Z5 * 1 - 0 = 0
A.push((2, 4, one));
B.push((2, num_vars, one));
let inst = R1CSInstance::new(num_cons, num_vars, num_inputs, &A, &B, &C);
// compute a satisfying assignment
let mut rng = ark_std::rand::thread_rng();
let i0 = Scalar::rand(&mut rng);
let i1 = Scalar::rand(&mut rng);
let z1 = Scalar::rand(&mut rng);
let z2 = Scalar::rand(&mut rng);
let z3 = (z1 + z2) * i0; // constraint 1: (Z1 + Z2) * I0 - Z3 = 0;
let z4 = (z1 + i1) * z3; // constraint 2: (Z1 + I1) * (Z3) - Z4 = 0
let z5 = Scalar::zero(); //constraint 3
let mut vars = vec![Scalar::zero(); num_vars];
vars[0] = z1;
vars[1] = z2;
vars[2] = z3;
vars[3] = z4;
vars[4] = z5;
let mut input = vec![Scalar::zero(); num_inputs];
input[0] = i0;
input[1] = i1;
(inst, vars, input)
}
#[test]
fn test_tiny_r1cs() {
let (inst, vars, input) = tests::produce_tiny_r1cs();
let is_sat = inst.is_sat(&vars, &input);
assert!(is_sat);
}
#[test]
fn test_synthetic_r1cs() {
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(1024, 1024, 10);
let is_sat = inst.is_sat(&vars, &input);
assert!(is_sat);
}
#[test]
pub fn check_r1cs_proof() {
let num_vars = 1024;
let num_cons = num_vars;
let num_inputs = 10;
let (inst, vars, input) = R1CSInstance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
// let gens = R1CSGens::new(b"test-m", num_cons, num_vars);
let params = poseidon_params();
// let mut random_tape = RandomTape::new(b"proof");
let mut prover_transcript = PoseidonTranscript::new(&params);
let (proof, rx, ry) = R1CSProof::prove(&inst, vars, &input, &mut prover_transcript);
let inst_evals = inst.evaluate(&rx, &ry);
let mut verifier_transcript = PoseidonTranscript::new(&params);
// if you want to check the test fails
// input[0] = Scalar::zero();
assert!(proof
.verify_groth16(
inst.get_num_vars(),
inst.get_num_cons(),
&input,
&inst_evals,
&mut verifier_transcript,
)
.is_ok());
}
}