use crate::poseidon_transcript::{AppendToPoseidon, PoseidonTranscript};
|
|
|
|
use super::commitments::{Commitments, MultiCommitGens};
|
|
use super::group::GroupElement;
|
|
use super::scalar::Scalar;
|
|
use super::transcript::{AppendToTranscript, ProofTranscript};
|
|
use ark_ff::{Field, One, Zero};
|
|
use ark_serialize::*;
|
|
use merlin::Transcript;
|
|
// ax^2 + bx + c stored as vec![c,b,a]
|
|
// ax^3 + bx^2 + cx + d stored as vec![d,c,b,a]
|
|
#[derive(Debug)]
|
|
pub struct UniPoly {
|
|
coeffs: Vec<Scalar>,
|
|
}
|
|
|
|
// ax^2 + bx + c stored as vec![c,a]
|
|
// ax^3 + bx^2 + cx + d stored as vec![d,b,a]
|
|
#[derive(CanonicalSerialize, CanonicalDeserialize, Debug)]
|
|
pub struct CompressedUniPoly {
|
|
coeffs_except_linear_term: Vec<Scalar>,
|
|
}
|
|
|
|
impl UniPoly {
|
|
pub fn from_evals(evals: &[Scalar]) -> Self {
|
|
// we only support degree-2 or degree-3 univariate polynomials
|
|
assert!(evals.len() == 3 || evals.len() == 4);
|
|
let coeffs = if evals.len() == 3 {
|
|
// ax^2 + bx + c
|
|
let two_inv = Scalar::from(2).inverse().unwrap();
|
|
|
|
let c = evals[0];
|
|
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
|
|
let b = evals[1] - c - a;
|
|
vec![c, b, a]
|
|
} else {
|
|
// ax^3 + bx^2 + cx + d
|
|
let two_inv = Scalar::from(2).inverse().unwrap();
|
|
let six_inv = Scalar::from(6).inverse().unwrap();
|
|
|
|
let d = evals[0];
|
|
let a = six_inv
|
|
* (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]);
|
|
let b = two_inv
|
|
* (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1]
|
|
+ evals[2]
|
|
+ evals[2]
|
|
+ evals[2]
|
|
+ evals[2]
|
|
- evals[3]);
|
|
let c = evals[1] - d - a - b;
|
|
vec![d, c, b, a]
|
|
};
|
|
|
|
UniPoly { coeffs }
|
|
}
|
|
|
|
pub fn degree(&self) -> usize {
|
|
self.coeffs.len() - 1
|
|
}
|
|
|
|
pub fn as_vec(&self) -> Vec<Scalar> {
|
|
self.coeffs.clone()
|
|
}
|
|
|
|
pub fn eval_at_zero(&self) -> Scalar {
|
|
self.coeffs[0]
|
|
}
|
|
|
|
pub fn eval_at_one(&self) -> Scalar {
|
|
(0..self.coeffs.len()).map(|i| self.coeffs[i]).sum()
|
|
}
|
|
|
|
pub fn evaluate(&self, r: &Scalar) -> Scalar {
|
|
let mut eval = self.coeffs[0];
|
|
let mut power = *r;
|
|
for i in 1..self.coeffs.len() {
|
|
eval += power * self.coeffs[i];
|
|
power *= r;
|
|
}
|
|
eval
|
|
}
|
|
|
|
pub fn compress(&self) -> CompressedUniPoly {
|
|
let coeffs_except_linear_term = [&self.coeffs[..1], &self.coeffs[2..]].concat();
|
|
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
|
|
CompressedUniPoly {
|
|
coeffs_except_linear_term,
|
|
}
|
|
}
|
|
|
|
pub fn commit(&self, gens: &MultiCommitGens, blind: &Scalar) -> GroupElement {
|
|
self.coeffs.commit(blind, gens)
|
|
}
|
|
}
|
|
|
|
impl CompressedUniPoly {
|
|
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
|
|
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
|
|
pub fn decompress(&self, hint: &Scalar) -> UniPoly {
|
|
let mut linear_term =
|
|
(*hint) - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
|
|
for i in 1..self.coeffs_except_linear_term.len() {
|
|
linear_term -= self.coeffs_except_linear_term[i];
|
|
}
|
|
|
|
let mut coeffs = vec![self.coeffs_except_linear_term[0], linear_term];
|
|
coeffs.extend(&self.coeffs_except_linear_term[1..]);
|
|
assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len());
|
|
UniPoly { coeffs }
|
|
}
|
|
}
|
|
|
|
impl AppendToPoseidon for UniPoly {
|
|
fn append_to_poseidon(&self, transcript: &mut PoseidonTranscript) {
|
|
// transcript.append_message(label, b"UniPoly_begin");
|
|
for i in 0..self.coeffs.len() {
|
|
transcript.append_scalar(&self.coeffs[i]);
|
|
}
|
|
// transcript.append_message(label, b"UniPoly_end");
|
|
}
|
|
}
|
|
|
|
impl AppendToTranscript for UniPoly {
|
|
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
|
|
transcript.append_message(label, b"UniPoly_begin");
|
|
for i in 0..self.coeffs.len() {
|
|
transcript.append_scalar(b"coeff", &self.coeffs[i]);
|
|
}
|
|
transcript.append_message(label, b"UniPoly_end");
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_from_evals_quad() {
|
|
// polynomial is 2x^2 + 3x + 1
|
|
let e0 = Scalar::one();
|
|
let e1 = Scalar::from(6);
|
|
let e2 = Scalar::from(15);
|
|
let evals = vec![e0, e1, e2];
|
|
let poly = UniPoly::from_evals(&evals);
|
|
|
|
assert_eq!(poly.eval_at_zero(), e0);
|
|
assert_eq!(poly.eval_at_one(), e1);
|
|
assert_eq!(poly.coeffs.len(), 3);
|
|
assert_eq!(poly.coeffs[0], Scalar::one());
|
|
assert_eq!(poly.coeffs[1], Scalar::from(3));
|
|
assert_eq!(poly.coeffs[2], Scalar::from(2));
|
|
|
|
let hint = e0 + e1;
|
|
let compressed_poly = poly.compress();
|
|
let decompressed_poly = compressed_poly.decompress(&hint);
|
|
for i in 0..decompressed_poly.coeffs.len() {
|
|
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
|
}
|
|
|
|
let e3 = Scalar::from(28);
|
|
assert_eq!(poly.evaluate(&Scalar::from(3)), e3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_evals_cubic() {
|
|
// polynomial is x^3 + 2x^2 + 3x + 1
|
|
let e0 = Scalar::one();
|
|
let e1 = Scalar::from(7);
|
|
let e2 = Scalar::from(23);
|
|
let e3 = Scalar::from(55);
|
|
let evals = vec![e0, e1, e2, e3];
|
|
let poly = UniPoly::from_evals(&evals);
|
|
|
|
assert_eq!(poly.eval_at_zero(), e0);
|
|
assert_eq!(poly.eval_at_one(), e1);
|
|
assert_eq!(poly.coeffs.len(), 4);
|
|
assert_eq!(poly.coeffs[0], Scalar::one());
|
|
assert_eq!(poly.coeffs[1], Scalar::from(3));
|
|
assert_eq!(poly.coeffs[2], Scalar::from(2));
|
|
assert_eq!(poly.coeffs[3], Scalar::from(1));
|
|
|
|
let hint = e0 + e1;
|
|
let compressed_poly = poly.compress();
|
|
let decompressed_poly = compressed_poly.decompress(&hint);
|
|
for i in 0..decompressed_poly.coeffs.len() {
|
|
assert_eq!(decompressed_poly.coeffs[i], poly.coeffs[i]);
|
|
}
|
|
|
|
let e4 = Scalar::from(109);
|
|
assert_eq!(poly.evaluate(&Scalar::from(4)), e4);
|
|
}
|
|
}
|