|
|
use bellperson::{
gadgets::{boolean::AllocatedBit, test::TestConstraintSystem},
ConstraintSystem, SynthesisError,
};
use core::ops::{AddAssign, MulAssign};
use ff::{
derive::byteorder::{ByteOrder, LittleEndian},
Field, PrimeField, PrimeFieldBits,
};
use nova_snark::{gadgets::ecc::AllocatedPoint, traits::Group as NovaGroup};
use num_bigint::BigUint;
use pasta_curves::{
arithmetic::CurveAffine,
group::{Curve, Group},
};
use rand::{rngs::OsRng, RngCore};
use sha3::{Digest, Sha3_512};
#[derive(Debug, Clone, Copy)]
pub struct SecretKey<G: Group>(G::Scalar);
impl<G> SecretKey<G>
where
G: Group,
{
pub fn random(mut rng: impl RngCore) -> Self {
let secret = G::Scalar::random(&mut rng);
Self(secret)
}
}
#[derive(Debug, Clone, Copy)]
pub struct PublicKey<G: Group>(G);
impl<G> PublicKey<G>
where
G: Group,
{
pub fn from_secret_key(s: &SecretKey<G>) -> Self {
let point = G::generator() * s.0;
Self(point)
}
}
#[derive(Clone)]
pub struct Signature<G: Group> {
pub r: G,
pub s: G::Scalar,
}
impl<G> SecretKey<G>
where
G: Group,
{
pub fn sign(self, c: G::Scalar, mut rng: impl RngCore) -> Signature<G> {
// T
let mut t = [0u8; 80];
rng.fill_bytes(&mut t[..]);
// h = H*(T || M)
let h = Self::hash_to_scalar(b"Nova_Ecdsa_Hash", &t[..], c.to_repr().as_mut());
// R = [h]G
let r = G::generator().mul(h);
// s = h + c * sk
let mut s = c;
s.mul_assign(&self.0);
s.add_assign(&h);
Signature { r, s }
}
fn mul_bits<B: AsRef<[u64]>>(s: &G::Scalar, bits: BitIterator<B>) -> G::Scalar {
let mut x = G::Scalar::ZERO;
for bit in bits {
x = x.double();
if bit {
x.add_assign(s)
}
}
x
}
fn to_uniform(digest: &[u8]) -> G::Scalar {
assert_eq!(digest.len(), 64);
let mut bits: [u64; 8] = [0; 8];
LittleEndian::read_u64_into(digest, &mut bits);
Self::mul_bits(&G::Scalar::ONE, BitIterator::new(bits))
}
pub fn to_uniform_32(digest: &[u8]) -> G::Scalar {
assert_eq!(digest.len(), 32);
let mut bits: [u64; 4] = [0; 4];
LittleEndian::read_u64_into(digest, &mut bits);
Self::mul_bits(&G::Scalar::ONE, BitIterator::new(bits))
}
pub fn hash_to_scalar(persona: &[u8], a: &[u8], b: &[u8]) -> G::Scalar {
let mut hasher = Sha3_512::new();
hasher.input(persona);
hasher.input(a);
hasher.input(b);
let digest = hasher.result();
Self::to_uniform(digest.as_ref())
}
}
impl<G> PublicKey<G>
where
G: Group,
G::Scalar: PrimeFieldBits,
{
pub fn verify(&self, c: G::Scalar, signature: &Signature<G>) -> bool {
let modulus = Self::modulus_as_scalar();
let order_check_pk = self.0.mul(modulus);
if !order_check_pk.eq(&G::identity()) {
return false;
}
let order_check_r = signature.r.mul(modulus);
if !order_check_r.eq(&G::identity()) {
return false;
}
// 0 = [-s]G + R + [c]PK
self
.0
.mul(c)
.add(&signature.r)
.add(G::generator().mul(signature.s).neg())
.eq(&G::identity())
}
fn modulus_as_scalar() -> G::Scalar {
let mut bits = G::Scalar::char_le_bits().to_bitvec();
let mut acc = BigUint::new(Vec::<u32>::new());
while let Some(b) = bits.pop() {
acc <<= 1_i32;
acc += b as u8;
}
let modulus = acc.to_str_radix(10);
G::Scalar::from_str_vartime(&modulus).unwrap()
}
}
#[derive(Debug)]
pub struct BitIterator<E> {
t: E,
n: usize,
}
impl<E: AsRef<[u64]>> BitIterator<E> {
pub fn new(t: E) -> Self {
let n = t.as_ref().len() * 64;
BitIterator { t, n }
}
}
impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
type Item = bool;
fn next(&mut self) -> Option<bool> {
if self.n == 0 {
None
} else {
self.n -= 1;
let part = self.n / 64;
let bit = self.n - (64 * part);
Some(self.t.as_ref()[part] & (1 << bit) > 0)
}
}
}
// Synthesize a bit representation into circuit gadgets.
pub fn synthesize_bits<F: PrimeField, CS: ConstraintSystem<F>>(
cs: &mut CS,
bits: Option<Vec<bool>>,
) -> Result<Vec<AllocatedBit>, SynthesisError> {
(0..F::NUM_BITS)
.map(|i| {
AllocatedBit::alloc(
cs.namespace(|| format!("bit {i}")),
Some(bits.as_ref().unwrap()[i as usize]),
)
})
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
}
pub fn verify_signature<G: NovaGroup, CS: ConstraintSystem<G::Base>>(
cs: &mut CS,
pk: AllocatedPoint<G>,
r: AllocatedPoint<G>,
s_bits: Vec<AllocatedBit>,
c_bits: Vec<AllocatedBit>,
) -> Result<(), SynthesisError> {
let g = AllocatedPoint::<G>::alloc(
cs.namespace(|| "g"),
Some((
G::Base::from_str_vartime(
"28948022309329048855892746252171976963363056481941647379679742748393362948096",
)
.unwrap(),
G::Base::from_str_vartime("2").unwrap(),
false,
)),
)
.unwrap();
cs.enforce(
|| "gx is vesta curve",
|lc| lc + g.get_coordinates().0.get_variable(),
|lc| lc + CS::one(),
|lc| {
lc + (
G::Base::from_str_vartime(
"28948022309329048855892746252171976963363056481941647379679742748393362948096",
)
.unwrap(),
CS::one(),
)
},
);
cs.enforce(
|| "gy is vesta curve",
|lc| lc + g.get_coordinates().1.get_variable(),
|lc| lc + CS::one(),
|lc| lc + (G::Base::from_str_vartime("2").unwrap(), CS::one()),
);
let sg = g.scalar_mul(cs.namespace(|| "[s]G"), &s_bits)?;
let cpk = pk.scalar_mul(&mut cs.namespace(|| "[c]PK"), &c_bits)?;
let rcpk = cpk.add(&mut cs.namespace(|| "R + [c]PK"), &r)?;
let (rcpk_x, rcpk_y, _) = rcpk.get_coordinates();
let (sg_x, sg_y, _) = sg.get_coordinates();
cs.enforce(
|| "sg_x == rcpk_x",
|lc| lc + sg_x.get_variable(),
|lc| lc + CS::one(),
|lc| lc + rcpk_x.get_variable(),
);
cs.enforce(
|| "sg_y == rcpk_y",
|lc| lc + sg_y.get_variable(),
|lc| lc + CS::one(),
|lc| lc + rcpk_y.get_variable(),
);
Ok(())
}
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
fn main() {
let mut cs = TestConstraintSystem::<<G1 as Group>::Scalar>::new();
assert!(cs.is_satisfied());
assert_eq!(cs.num_constraints(), 0);
let sk = SecretKey::<G2>::random(&mut OsRng);
let pk = PublicKey::from_secret_key(&sk);
// generate a random message to sign
let c = <G2 as Group>::Scalar::random(&mut OsRng);
// sign and verify
let signature = sk.sign(c, &mut OsRng);
let result = pk.verify(c, &signature);
assert!(result);
// prepare inputs to the circuit gadget
let pk = {
let pkxy = pk.0.to_affine().coordinates().unwrap();
AllocatedPoint::<G2>::alloc(
cs.namespace(|| "pub key"),
Some((*pkxy.x(), *pkxy.y(), false)),
)
.unwrap()
};
let r = {
let rxy = signature.r.to_affine().coordinates().unwrap();
AllocatedPoint::alloc(cs.namespace(|| "r"), Some((*rxy.x(), *rxy.y(), false))).unwrap()
};
let s = {
let s_bits = signature
.s
.to_le_bits()
.iter()
.map(|b| *b)
.collect::<Vec<bool>>();
synthesize_bits(&mut cs.namespace(|| "s bits"), Some(s_bits)).unwrap()
};
let c = {
let c_bits = c.to_le_bits().iter().map(|b| *b).collect::<Vec<bool>>();
synthesize_bits(&mut cs.namespace(|| "c bits"), Some(c_bits)).unwrap()
};
// Check the signature was signed by the correct sk using the pk
verify_signature(&mut cs, pk, r, s, c).unwrap();
assert!(cs.is_satisfied());
}
|