@ -53,7 +53,7 @@ impl IdentityPolynomial {
assert_eq ! ( self . ell , r . len ( ) ) ;
( 0 . . self . ell )
. map ( | i | Scalar ::from ( 2_ usize . pow ( ( self . ell - i - 1 ) as u32 ) as u64 ) * r [ i ] )
. fold ( Scalar ::zero ( ) , | acc , item | acc + item )
. fold ( Scalar ::ZERO , | acc , item | acc + item )
}
}
@ -149,25 +149,25 @@ impl R1CSShapeSparkRepr {
let val_A = {
let mut val = S . A . iter ( ) . map ( | ( _ , _ , v ) | * v ) . collect ::< Vec < G ::Scalar > > ( ) ;
val . resize ( N , G ::Scalar ::zero ( ) ) ;
val . resize ( N , G ::Scalar ::ZERO ) ;
val
} ;
let val_B = {
// prepend zeros
let mut val = vec ! [ G ::Scalar ::zero ( ) ; S . A . len ( ) ] ;
let mut val = vec ! [ G ::Scalar ::ZERO ; S . A . len ( ) ] ;
val . extend ( S . B . iter ( ) . map ( | ( _ , _ , v ) | * v ) . collect ::< Vec < G ::Scalar > > ( ) ) ;
// append zeros
val . resize ( N , G ::Scalar ::zero ( ) ) ;
val . resize ( N , G ::Scalar ::ZERO ) ;
val
} ;
let val_C = {
// prepend zeros
let mut val = vec ! [ G ::Scalar ::zero ( ) ; S . A . len ( ) + S . B . len ( ) ] ;
let mut val = vec ! [ G ::Scalar ::ZERO ; S . A . len ( ) + S . B . len ( ) ] ;
val . extend ( S . C . iter ( ) . map ( | ( _ , _ , v ) | * v ) . collect ::< Vec < G ::Scalar > > ( ) ) ;
// append zeros
val . resize ( N , G ::Scalar ::zero ( ) ) ;
val . resize ( N , G ::Scalar ::ZERO ) ;
val
} ;
@ -262,7 +262,7 @@ impl R1CSShapeSparkRepr {
Vec < G ::Scalar > ,
) {
let r_x_padded = {
let mut x = vec ! [ G ::Scalar ::zero ( ) ; self . N . log_2 ( ) - r_x . len ( ) ] ;
let mut x = vec ! [ G ::Scalar ::ZERO ; self . N . log_2 ( ) - r_x . len ( ) ] ;
x . extend ( r_x ) ;
x
} ;
@ -270,7 +270,7 @@ impl R1CSShapeSparkRepr {
let mem_row = EqPolynomial ::new ( r_x_padded ) . evals ( ) ;
let mem_col = {
let mut z = z . to_vec ( ) ;
z . resize ( self . N , G ::Scalar ::zero ( ) ) ;
z . resize ( self . N , G ::Scalar ::ZERO ) ;
z
} ;
@ -374,8 +374,8 @@ impl ProductSumcheckInstance {
// add a dummy product operation to make the left.len() == right.len() == output.len() == input.len()
left . push ( output [ output . len ( ) - 1 ] ) ;
right . push ( G ::Scalar ::zero ( ) ) ;
output . push ( G ::Scalar ::zero ( ) ) ;
right . push ( G ::Scalar ::ZERO ) ;
output . push ( G ::Scalar ::ZERO ) ;
// output is stored at the last but one position
let product = output [ output . len ( ) - 2 ] ;
@ -445,7 +445,7 @@ impl ProductSumcheckInstance {
impl < G : Group > SumcheckEngine < G > for ProductSumcheckInstance < G > {
fn initial_claims ( & self ) -> Vec < G ::Scalar > {
vec ! [ G ::Scalar ::zero ( ) ; 8 ]
vec ! [ G ::Scalar ::ZERO ; 8 ]
}
fn degree ( & self ) -> usize {
@ -515,7 +515,7 @@ impl SumcheckEngine for ProductSumcheckInstance {
( eval_point_0 , eval_point_2 , eval_point_3 )
} )
. reduce (
| | ( G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) ) ,
| | ( G ::Scalar ::ZERO , G ::Scalar ::ZERO , G ::Scalar ::ZERO ) ,
| a , b | ( a . 0 + b . 0 , a . 1 + b . 1 , a . 2 + b . 2 ) ,
) ;
vec ! [ eval_point_0 , eval_point_2 , eval_point_3 ]
@ -561,7 +561,7 @@ struct OuterSumcheckInstance {
impl < G : Group > SumcheckEngine < G > for OuterSumcheckInstance < G > {
fn initial_claims ( & self ) -> Vec < G ::Scalar > {
vec ! [ G ::Scalar ::zero ( ) ]
vec ! [ G ::Scalar ::ZERO ]
}
fn degree ( & self ) -> usize {
@ -623,7 +623,7 @@ impl SumcheckEngine for OuterSumcheckInstance {
( eval_point_0 , eval_point_2 , eval_point_3 )
} )
. reduce (
| | ( G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) ) ,
| | ( G ::Scalar ::ZERO , G ::Scalar ::ZERO , G ::Scalar ::ZERO ) ,
| a , b | ( a . 0 + b . 0 , a . 1 + b . 1 , a . 2 + b . 2 ) ,
) ;
@ -706,7 +706,7 @@ impl SumcheckEngine for InnerSumcheckInstance {
( eval_point_0 , eval_point_2 , eval_point_3 )
} )
. reduce (
| | ( G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) , G ::Scalar ::zero ( ) ) ,
| | ( G ::Scalar ::ZERO , G ::Scalar ::ZERO , G ::Scalar ::ZERO ) ,
| a , b | ( a . 0 + b . 0 , a . 1 + b . 1 , a . 2 + b . 2 ) ,
) ;
@ -860,7 +860,7 @@ impl> RelaxedR1CSSNARK
. iter ( )
. zip ( coeffs . iter ( ) )
. map ( | ( c_1 , c_2 ) | * c_1 * c_2 )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let mut e = claim ;
let mut r : Vec < G ::Scalar > = Vec ::new ( ) ;
@ -875,13 +875,13 @@ impl> RelaxedR1CSSNARK
let evals_combined_0 = ( 0 . . evals . len ( ) )
. map ( | i | evals [ i ] [ 0 ] * coeffs [ i ] )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let evals_combined_2 = ( 0 . . evals . len ( ) )
. map ( | i | evals [ i ] [ 1 ] * coeffs [ i ] )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let evals_combined_3 = ( 0 . . evals . len ( ) )
. map ( | i | evals [ i ] [ 2 ] * coeffs [ i ] )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let evals = vec ! [
evals_combined_0 ,
@ -1000,12 +1000,12 @@ impl> RelaxedR1CSSNARKTrait
// (1) send commitments to Az, Bz, and Cz along with their evaluations at tau
let ( Az , Bz , Cz , E ) = {
Az . resize ( pk . S_repr . N , G ::Scalar ::zero ( ) ) ;
Bz . resize ( pk . S_repr . N , G ::Scalar ::zero ( ) ) ;
Cz . resize ( pk . S_repr . N , G ::Scalar ::zero ( ) ) ;
Az . resize ( pk . S_repr . N , G ::Scalar ::ZERO ) ;
Bz . resize ( pk . S_repr . N , G ::Scalar ::ZERO ) ;
Cz . resize ( pk . S_repr . N , G ::Scalar ::ZERO ) ;
let mut E = W . E . clone ( ) ;
E . resize ( pk . S_repr . N , G ::Scalar ::zero ( ) ) ;
E . resize ( pk . S_repr . N , G ::Scalar ::ZERO ) ;
( Az , Bz , Cz , E )
} ;
@ -1092,7 +1092,7 @@ impl> RelaxedR1CSSNARKTrait
} ;
let init_row = ( 0 . . mem_row . len ( ) )
. map ( | i | hash_func ( & G ::Scalar ::from ( i as u64 ) , & mem_row [ i ] , & G ::Scalar ::zero ( ) ) )
. map ( | i | hash_func ( & G ::Scalar ::from ( i as u64 ) , & mem_row [ i ] , & G ::Scalar ::ZERO ) )
. collect ::< Vec < G ::Scalar > > ( ) ;
let read_row = ( 0 . . E_row . len ( ) )
. map ( | i | hash_func ( & pk . S_repr . row [ i ] , & E_row [ i ] , & pk . S_repr . row_read_ts [ i ] ) )
@ -1102,7 +1102,7 @@ impl> RelaxedR1CSSNARKTrait
hash_func (
& pk . S_repr . row [ i ] ,
& E_row [ i ] ,
& ( pk . S_repr . row_read_ts [ i ] + G ::Scalar ::one ( ) ) ,
& ( pk . S_repr . row_read_ts [ i ] + G ::Scalar ::ONE ) ,
)
} )
. collect ::< Vec < G ::Scalar > > ( ) ;
@ -1117,7 +1117,7 @@ impl> RelaxedR1CSSNARKTrait
. collect ::< Vec < G ::Scalar > > ( ) ;
let init_col = ( 0 . . mem_col . len ( ) )
. map ( | i | hash_func ( & G ::Scalar ::from ( i as u64 ) , & mem_col [ i ] , & G ::Scalar ::zero ( ) ) )
. map ( | i | hash_func ( & G ::Scalar ::from ( i as u64 ) , & mem_col [ i ] , & G ::Scalar ::ZERO ) )
. collect ::< Vec < G ::Scalar > > ( ) ;
let read_col = ( 0 . . E_col . len ( ) )
. map ( | i | hash_func ( & pk . S_repr . col [ i ] , & E_col [ i ] , & pk . S_repr . col_read_ts [ i ] ) )
@ -1127,7 +1127,7 @@ impl> RelaxedR1CSSNARKTrait
hash_func (
& pk . S_repr . col [ i ] ,
& E_col [ i ] ,
& ( pk . S_repr . col_read_ts [ i ] + G ::Scalar ::one ( ) ) ,
& ( pk . S_repr . col_read_ts [ i ] + G ::Scalar ::ONE ) ,
)
} )
. collect ::< Vec < G ::Scalar > > ( ) ;
@ -1190,7 +1190,7 @@ impl> RelaxedR1CSSNARKTrait
// into claims about input and output
let c = transcript . squeeze ( b" c " ) ? ;
// eval = (G::Scalar::one() - c) * eval_left + c * eval_right
// eval = (G::Scalar::ONE - c) * eval_left + c * eval_right
// eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c)
let rand_ext = {
let mut r = r_sat . clone ( ) ;
@ -1233,13 +1233,13 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let eval_output = eval_output_vec
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let comm_output = mem_sc_inst
. comm_output_vec
@ -1250,7 +1250,7 @@ impl> RelaxedR1CSSNARKTrait
let weighted_sum = | W : & [ Vec < G ::Scalar > ] , s : & [ G ::Scalar ] | -> Vec < G ::Scalar > {
assert_eq ! ( W . len ( ) , s . len ( ) ) ;
let mut p = vec ! [ G ::Scalar ::zero ( ) ; W [ 0 ] . len ( ) ] ;
let mut p = vec ! [ G ::Scalar ::ZERO ; W [ 0 ] . len ( ) ] ;
for i in 0 . . W . len ( ) {
for ( j , item ) in W [ i ] . iter ( ) . enumerate ( ) . take ( W [ i ] . len ( ) ) {
p [ j ] + = * item * s [ i ]
@ -1265,7 +1265,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
// eval_output = output(r_sat)
w_u_vec . push ( (
@ -1281,8 +1281,8 @@ impl> RelaxedR1CSSNARKTrait
// claimed_product = output(1, ..., 1, 0)
let x = {
let mut x = vec ! [ G ::Scalar ::one ( ) ; r_sat . len ( ) ] ;
x [ r_sat . len ( ) - 1 ] = G ::Scalar ::zero ( ) ;
let mut x = vec ! [ G ::Scalar ::ONE ; r_sat . len ( ) ] ;
x [ r_sat . len ( ) - 1 ] = G ::Scalar ::ZERO ;
x
} ;
w_u_vec . push ( (
@ -1457,7 +1457,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( u , p ) | u . e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let mut polys_left : Vec < MultilinearPolynomial < G ::Scalar > > = w_vec_padded
. iter ( )
@ -1499,7 +1499,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_gamma . iter ( ) )
. map ( | ( e , g_i ) | * e * * g_i )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let eval_arg = EE ::prove (
ck ,
@ -1674,7 +1674,7 @@ impl> RelaxedR1CSSNARKTrait
* rand_eq_bound_r_sat
* ( self . eval_left_arr [ i ] * self . eval_right_arr [ i ] - self . eval_output_arr [ i ] )
} )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let claim_outer_final_expected = coeffs [ 8 ]
* taus_bound_r_sat
* ( self . eval_Az * self . eval_Bz - U . u * self . eval_Cz - self . eval_E ) ;
@ -1712,7 +1712,7 @@ impl> RelaxedR1CSSNARKTrait
// into claims about input and output
let c = transcript . squeeze ( b" c " ) ? ;
// eval = (G::Scalar::one() - c) * eval_left + c * eval_right
// eval = (G::Scalar::ONE - c) * eval_left + c * eval_right
// eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c)
let rand_ext = {
let mut r = r_sat . clone ( ) ;
@ -1744,14 +1744,14 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let eval_output = self
. eval_output_arr
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let comm_output = comm_output_vec
. iter ( )
@ -1764,7 +1764,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( e , p ) | * e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
// eval_output = output(r_sat)
u_vec . push ( PolyEvalInstance {
@ -1775,8 +1775,8 @@ impl> RelaxedR1CSSNARKTrait
// claimed_product = output(1, ..., 1, 0)
let x = {
let mut x = vec ! [ G ::Scalar ::one ( ) ; r_sat . len ( ) ] ;
x [ r_sat . len ( ) - 1 ] = G ::Scalar ::zero ( ) ;
let mut x = vec ! [ G ::Scalar ::ONE ; r_sat . len ( ) ] ;
x [ r_sat . len ( ) - 1 ] = G ::Scalar ::ZERO ;
x
} ;
u_vec . push ( PolyEvalInstance {
@ -1842,9 +1842,9 @@ impl> RelaxedR1CSSNARKTrait
let ( factor , r_prod_unpad ) = {
let l = vk . S_comm . N . log_2 ( ) - ( 2 * vk . num_vars ) . log_2 ( ) ;
let mut factor = G ::Scalar ::one ( ) ;
let mut factor = G ::Scalar ::ONE ;
for r_p in r_prod . iter ( ) . take ( l ) {
factor * = G ::Scalar ::one ( ) - r_p
factor * = G ::Scalar ::ONE - r_p
}
let r_prod_unpad = {
@ -1868,7 +1868,7 @@ impl> RelaxedR1CSSNARKTrait
. evaluate ( & r_prod_unpad [ 1 . . ] )
} ;
let eval_Z =
factor * ( ( G ::Scalar ::one ( ) - r_prod_unpad [ 0 ] ) * self . eval_W + r_prod_unpad [ 0 ] * eval_X ) ;
factor * ( ( G ::Scalar ::ONE - r_prod_unpad [ 0 ] ) * self . eval_W + r_prod_unpad [ 0 ] * eval_X ) ;
( eval_Z , r_prod_unpad )
} ;
@ -1884,7 +1884,7 @@ impl> RelaxedR1CSSNARKTrait
let addr = IdentityPolynomial ::new ( r_prod . len ( ) ) . evaluate ( & r_prod ) ;
let val = EqPolynomial ::new ( tau . to_vec ( ) ) . evaluate ( & r_prod ) ;
(
hash_func ( & addr , & val , & G ::Scalar ::zero ( ) ) ,
hash_func ( & addr , & val , & G ::Scalar ::ZERO ) ,
hash_func ( & addr , & val , & self . eval_row_audit_ts ) ,
)
} ;
@ -1899,7 +1899,7 @@ impl> RelaxedR1CSSNARKTrait
hash_func (
& self . eval_row ,
& self . eval_E_row_at_r_prod ,
& ( self . eval_row_read_ts + G ::Scalar ::one ( ) ) ,
& ( self . eval_row_read_ts + G ::Scalar ::ONE ) ,
) ,
)
} ;
@ -1917,7 +1917,7 @@ impl> RelaxedR1CSSNARKTrait
let addr = IdentityPolynomial ::new ( r_prod . len ( ) ) . evaluate ( & r_prod ) ;
let val = eval_Z ;
(
hash_func ( & addr , & val , & G ::Scalar ::zero ( ) ) ,
hash_func ( & addr , & val , & G ::Scalar ::ZERO ) ,
hash_func ( & addr , & val , & self . eval_col_audit_ts ) ,
)
} ;
@ -1932,7 +1932,7 @@ impl> RelaxedR1CSSNARKTrait
hash_func (
& self . eval_col ,
& self . eval_E_col_at_r_prod ,
& ( self . eval_col_read_ts + G ::Scalar ::one ( ) ) ,
& ( self . eval_col_read_ts + G ::Scalar ::ONE ) ,
) ,
)
} ;
@ -1985,7 +1985,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( u , p ) | u . e * p )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
let num_rounds_z = u_vec_padded [ 0 ] . x . len ( ) ;
let ( claim_batch_final , r_z ) =
@ -2005,7 +2005,7 @@ impl> RelaxedR1CSSNARKTrait
. zip ( self . evals_batch_arr . iter ( ) )
. zip ( powers_of_rho . iter ( ) )
. map ( | ( ( e_i , p_i ) , rho_i ) | * e_i * * p_i * rho_i )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item )
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item )
} ;
if claim_batch_final ! = claim_batch_final_expected {
@ -2027,7 +2027,7 @@ impl> RelaxedR1CSSNARKTrait
. iter ( )
. zip ( powers_of_gamma . iter ( ) )
. map ( | ( e , g_i ) | * e * * g_i )
. fold ( G ::Scalar ::zero ( ) , | acc , item | acc + item ) ;
. fold ( G ::Scalar ::ZERO , | acc , item | acc + item ) ;
// verify
EE ::verify (
@ -2055,7 +2055,7 @@ impl> Circuit for SpartanCircuit
let arity = self . sc . arity ( ) ;
// Allocate zi. If inputs.zi is not provided, allocate default value 0
let zero = vec ! [ G ::Scalar ::zero ( ) ; arity ] ;
let zero = vec ! [ G ::Scalar ::ZERO ; arity ] ;
let z_i = ( 0 . . arity )
. map ( | i | {
AllocatedNum ::alloc ( cs . namespace ( | | format ! ( "zi_{i}" ) ) , | | {
@ -2248,7 +2248,7 @@ mod tests {
let num_steps = 3 ;
// setup inputs
let z0 = vec ! [ < G as Group > ::Scalar ::zero ( ) ] ;
let z0 = vec ! [ < G as Group > ::Scalar ::ZERO ] ;
let mut z_i = z0 ;
for _i in 0 . . num_steps {