|
|
#![allow(non_snake_case)]
use nova_snark::{
traits::{Group, StepCircuit},
PublicParams, RecursiveSNARK,
};
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use criterion::*;
use ff::PrimeField;
use std::time::Duration;
fn recursive_snark_benchmark(c: &mut Criterion) {
let num_samples = 10;
bench_recursive_snark(c, num_samples);
}
fn set_duration() -> Criterion {
Criterion::default().warm_up_time(Duration::from_millis(3000))
}
criterion_group! {
name = recursive_snark;
config = set_duration();
targets = recursive_snark_benchmark
}
criterion_main!(recursive_snark);
fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
let mut group = c.benchmark_group("RecursiveSNARK".to_string());
group.sample_size(num_samples);
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
);
// Bench time to produce a recursive SNARK;
// we execute a certain number of warm-up steps since executing
// the first step is cheaper than other steps owing to the presence of
// a lot of zeros in the satisfying assignment
let num_warmup_steps = 10;
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
for i in 0..num_warmup_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
&pp,
i + 1,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
group.bench_function("Prove", |b| {
b.iter(|| {
// produce a recursive SNARK for a step of the recursion
assert!(RecursiveSNARK::prove_step(
black_box(&pp),
black_box(recursive_snark.clone()),
black_box(TrivialTestCircuit {
_p: Default::default(),
}),
black_box(TrivialTestCircuit {
_p: Default::default(),
}),
black_box(<G1 as Group>::Scalar::zero()),
black_box(<G2 as Group>::Scalar::zero()),
)
.is_ok());
})
});
let recursive_snark = recursive_snark.unwrap();
// Benchmark the verification time
let name = "Verify";
group.bench_function(name, |b| {
b.iter(|| {
assert!(black_box(&recursive_snark)
.verify(
black_box(&pp),
black_box(num_warmup_steps),
black_box(<G1 as Group>::Scalar::zero()),
black_box(<G2 as Group>::Scalar::zero()),
)
.is_ok());
});
});
group.finish();
}
|