Recursion implementation (#65)

* recursion attempt

* address clippy

* initialize the running instance and witness of the primary correctly

* add asserts for debugging

* fix a bug in AllocatedPoint

* add debug statements

* fix an issue with how we inputize hashes; remove debug statements

* rename

* cleanup

* speedup tests

* require step_circuit implementors to provide a way to execute step computation
This commit is contained in:
Srinath Setty
2022-05-17 18:29:29 +05:30
committed by GitHub
parent 4311ad1c1b
commit 1fd4eee2b6
7 changed files with 154 additions and 30 deletions

View File

@@ -20,13 +20,14 @@ use crate::bellperson::{
shape_cs::ShapeCS,
solver::SatisfyingAssignment,
};
use crate::poseidon::ROConstantsCircuit; // TODO: make this a trait so we can use it without the concrete implementation
use ::bellperson::{Circuit, ConstraintSystem};
use circuit::{NIFSVerifierCircuit, NIFSVerifierCircuitInputs, NIFSVerifierCircuitParams};
use constants::{BN_LIMB_WIDTH, BN_N_LIMBS};
use core::marker::PhantomData;
use errors::NovaError;
use ff::Field;
use nifs::NIFS;
use poseidon::ROConstantsCircuit; // TODO: make this a trait so we can use it without the concrete implementation
use r1cs::{
R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness,
};
@@ -148,6 +149,7 @@ where
pp: &PublicParams<G1, G2, C1, C2>,
z0_primary: G1::Scalar,
z0_secondary: G2::Scalar,
num_steps: usize,
) -> Result<Self, NovaError> {
// Execute the base case for the primary
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
@@ -171,11 +173,6 @@ where
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
.map_err(|_e| NovaError::UnSat)?;
// check if the base case is satisfied
pp.r1cs_shape_primary
.is_sat(&pp.r1cs_gens_primary, &u_primary, &w_primary)
.map_err(|_e| NovaError::UnSat)?;
// Execute the base case for the secondary
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
@@ -198,26 +195,115 @@ where
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
.map_err(|_e| NovaError::UnSat)?;
// check if the base case is satisfied
pp.r1cs_shape_secondary
.is_sat(&pp.r1cs_gens_secondary, &u_secondary, &w_secondary)
.map_err(|_e| NovaError::UnSat)?;
// execute the remaining steps, alternating between G1 and G2
let mut l_w_primary = w_primary;
let mut l_u_primary = u_primary;
let mut r_W_primary =
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
let mut r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
&pp.r1cs_gens_primary,
&pp.r1cs_shape_primary,
&l_u_primary,
);
let mut r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
let mut r_U_secondary =
RelaxedR1CSInstance::<G2>::default(&pp.r1cs_gens_secondary, &pp.r1cs_shape_secondary);
let mut l_w_secondary = w_secondary;
let mut l_u_secondary = u_secondary;
let mut z_next_primary = z0_primary;
let mut z_next_secondary = z0_secondary;
// TODO: execute the provided step circuit(s) to feed real z_i into the verifier circuit
for i in 1..num_steps {
// fold the secondary circuit's instance into r_W_primary
let (nifs_secondary, (r_U_next_secondary, r_W_next_secondary)) = NIFS::prove(
&pp.r1cs_gens_secondary,
&pp._ro_consts_secondary,
&pp.r1cs_shape_secondary,
&r_U_secondary,
&r_W_secondary,
&l_u_secondary,
&l_w_secondary,
)?;
z_next_primary = pp.c_primary.compute(&z_next_primary);
z_next_secondary = pp.c_secondary.compute(&z_next_secondary);
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
pp.r1cs_shape_secondary.get_digest(),
<G2 as Group>::Base::from(i as u64),
z0_primary,
Some(z_next_primary),
Some(r_U_secondary),
Some(l_u_secondary),
Some(nifs_secondary.comm_T.decompress()?),
);
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
pp.params_primary.clone(),
Some(inputs_primary),
pp.c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
(l_u_primary, l_w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
.map_err(|_e| NovaError::UnSat)?;
// fold the secondary circuit's instance into r_W_primary
let (nifs_primary, (r_U_next_primary, r_W_next_primary)) = NIFS::prove(
&pp.r1cs_gens_primary,
&pp._ro_consts_primary,
&pp.r1cs_shape_primary,
&r_U_primary.clone(),
&r_W_primary.clone(),
&l_u_primary.clone(),
&l_w_primary.clone(),
)?;
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
pp.r1cs_shape_primary.get_digest(),
<G1 as Group>::Base::from(i as u64),
z0_secondary,
Some(z_next_secondary),
Some(r_U_primary.clone()),
Some(l_u_primary.clone()),
Some(nifs_primary.comm_T.decompress()?),
);
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
pp.params_secondary.clone(),
Some(inputs_secondary),
pp.c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
(l_u_secondary, l_w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
.map_err(|_e| NovaError::UnSat)?;
// update the running instances and witnesses
r_U_secondary = r_U_next_secondary;
r_W_secondary = r_W_next_secondary;
r_U_primary = r_U_next_primary;
r_W_primary = r_W_next_primary;
}
Ok(Self {
r_W_primary: RelaxedR1CSWitness::<G1>::default(&pp.r1cs_shape_primary),
r_U_primary: RelaxedR1CSInstance::<G1>::default(
&pp.r1cs_gens_primary,
&pp.r1cs_shape_primary,
),
l_w_primary: w_primary,
l_u_primary: u_primary,
r_W_secondary: RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary),
r_U_secondary: RelaxedR1CSInstance::<G2>::default(
&pp.r1cs_gens_secondary,
&pp.r1cs_shape_secondary,
),
l_w_secondary: w_secondary,
l_u_secondary: u_secondary,
r_W_primary,
r_U_primary,
l_w_primary,
l_u_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
@@ -225,18 +311,23 @@ where
/// Verify the correctness of the `RecursiveSNARK`
pub fn verify(&self, pp: &PublicParams<G1, G2, C1, C2>) -> Result<(), NovaError> {
// TODO: perform additional checks on whether (shape_digest, z_0, z_i, i) are correct
pp.r1cs_shape_primary.is_sat_relaxed(
&pp.r1cs_gens_primary,
&self.r_U_primary,
&self.r_W_primary,
)?;
pp.r1cs_shape_primary
.is_sat(&pp.r1cs_gens_primary, &self.l_u_primary, &self.l_w_primary)?;
pp.r1cs_shape_secondary.is_sat_relaxed(
&pp.r1cs_gens_secondary,
&self.r_U_secondary,
&self.r_W_secondary,
)?;
pp.r1cs_shape_secondary.is_sat(
&pp.r1cs_gens_secondary,
&self.l_u_secondary,
@@ -272,10 +363,14 @@ mod tests {
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
#[test]
fn test_base_case() {
fn test_ivc() {
// produce public parameters
let pp = PublicParams::<
G1,
@@ -296,6 +391,7 @@ mod tests {
&pp,
<G2 as Group>::Base::zero(),
<G1 as Group>::Base::zero(),
3,
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();