reorganize traits into a module; cut boilerplate code (#91)

use a default implementation for step circuit
This commit is contained in:
Srinath Setty
2022-07-14 16:15:45 -07:00
committed by GitHub
parent 704d48b528
commit 35cb03f977
10 changed files with 100 additions and 258 deletions

View File

@@ -1,46 +1,19 @@
#![allow(non_snake_case)]
use criterion::*;
use nova_snark::{
traits::{Group, StepCircuit},
traits::{circuit::TrivialTestCircuit, Group},
CompressedSNARK, PublicParams, RecursiveSNARK,
};
use std::time::Duration;
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use criterion::*;
use ff::PrimeField;
use std::time::Duration;
fn compressed_snark_benchmark(c: &mut Criterion) {
let num_samples = 10;
bench_compressed_snark(c, num_samples);
@@ -64,12 +37,8 @@ fn bench_compressed_snark(c: &mut Criterion, num_samples: usize) {
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
);
// produce a recursive SNARK
@@ -80,12 +49,8 @@ fn bench_compressed_snark(c: &mut Criterion, num_samples: usize) {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
);

View File

@@ -1,44 +1,17 @@
#![allow(non_snake_case)]
use criterion::*;
use nova_snark::{
traits::{Group, StepCircuit},
traits::{circuit::TrivialTestCircuit, Group},
PublicParams, RecursiveSNARK,
};
use std::time::Duration;
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use criterion::*;
use ff::PrimeField;
use std::time::Duration;
fn recursive_snark_benchmark(c: &mut Criterion) {
let num_samples = 10;
bench_recursive_snark(c, num_samples);
@@ -62,12 +35,8 @@ fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
);
// Bench time to produce a recursive SNARK;
@@ -81,12 +50,8 @@ fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
);
@@ -112,12 +77,8 @@ fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
assert!(RecursiveSNARK::prove_step(
black_box(&pp),
black_box(recursive_snark.clone()),
black_box(TrivialTestCircuit {
_p: Default::default(),
}),
black_box(TrivialTestCircuit {
_p: Default::default(),
}),
black_box(TrivialTestCircuit::default()),
black_box(TrivialTestCircuit::default()),
black_box(<G1 as Group>::Scalar::zero()),
black_box(<G2 as Group>::Scalar::zero()),
)

View File

@@ -12,11 +12,13 @@ use neptune::{
Strength,
};
use nova_snark::{
traits::{Group, StepCircuit},
traits::{
circuit::{StepCircuit, TrivialTestCircuit},
Group,
},
CompressedSNARK, PublicParams, RecursiveSNARK,
};
use num_bigint::BigUint;
use std::marker::PhantomData;
use std::time::Instant;
#[derive(Clone, Debug)]
@@ -183,9 +185,7 @@ fn main() {
pc: pc.clone(),
};
let circuit_secondary = TrivialTestCircuit {
_p: Default::default(),
};
let circuit_secondary = TrivialTestCircuit::default();
println!("Nova-based VDF with MinRoot delay function");
println!("==========================================");
@@ -299,26 +299,3 @@ fn main() {
);
assert!(res.is_ok());
}
// A trivial test circuit that we use on the secondary curve
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}

View File

@@ -16,7 +16,7 @@ use super::{
},
},
r1cs::{R1CSInstance, RelaxedR1CSInstance},
traits::{Group, HashFuncCircuitTrait, HashFuncConstantsCircuit, StepCircuit},
traits::{circuit::StepCircuit, Group, HashFuncCircuitTrait, HashFuncConstantsCircuit},
};
use bellperson::{
gadgets::{
@@ -355,32 +355,8 @@ mod tests {
use crate::{
bellperson::r1cs::{NovaShape, NovaWitness},
poseidon::PoseidonConstantsCircuit,
traits::HashFuncConstantsTrait,
traits::{circuit::TrivialTestCircuit, HashFuncConstantsTrait},
};
use ff::PrimeField;
use std::marker::PhantomData;
#[derive(Clone)]
struct TestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
#[test]
fn test_verification_circuit() {
@@ -391,13 +367,11 @@ mod tests {
let ro_consts2: HashFuncConstantsCircuit<G1> = PoseidonConstantsCircuit::new();
// Initialize the shape and gens for the primary
let circuit1: NIFSVerifierCircuit<G2, TestCircuit<<G2 as Group>::Base>> =
let circuit1: NIFSVerifierCircuit<G2, TrivialTestCircuit<<G2 as Group>::Base>> =
NIFSVerifierCircuit::new(
params1.clone(),
None,
TestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
ro_consts1.clone(),
);
let mut cs: ShapeCS<G1> = ShapeCS::new();
@@ -406,13 +380,11 @@ mod tests {
assert_eq!(cs.num_constraints(), 20584);
// Initialize the shape and gens for the secondary
let circuit2: NIFSVerifierCircuit<G1, TestCircuit<<G1 as Group>::Base>> =
let circuit2: NIFSVerifierCircuit<G1, TrivialTestCircuit<<G1 as Group>::Base>> =
NIFSVerifierCircuit::new(
params2.clone(),
None,
TestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
ro_consts2.clone(),
);
let mut cs: ShapeCS<G2> = ShapeCS::new();
@@ -425,13 +397,11 @@ mod tests {
let mut cs1: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs1: NIFSVerifierCircuitInputs<G2> =
NIFSVerifierCircuitInputs::new(shape2.get_digest(), zero1, zero1, None, None, None, None);
let circuit1: NIFSVerifierCircuit<G2, TestCircuit<<G2 as Group>::Base>> =
let circuit1: NIFSVerifierCircuit<G2, TrivialTestCircuit<<G2 as Group>::Base>> =
NIFSVerifierCircuit::new(
params1,
Some(inputs1),
TestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
ro_consts1,
);
let _ = circuit1.synthesize(&mut cs1);
@@ -451,13 +421,11 @@ mod tests {
Some(inst1),
None,
);
let circuit: NIFSVerifierCircuit<G1, TestCircuit<<G1 as Group>::Base>> =
let circuit: NIFSVerifierCircuit<G1, TrivialTestCircuit<<G1 as Group>::Base>> =
NIFSVerifierCircuit::new(
params2,
Some(inputs2),
TestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
ro_consts2,
);
let _ = circuit.synthesize(&mut cs2);

View File

@@ -16,7 +16,6 @@ mod r1cs;
pub mod errors;
pub mod gadgets;
pub mod pasta;
pub mod snark;
pub mod spartan_with_ipa_pc;
pub mod traits;
@@ -36,10 +35,9 @@ use nifs::NIFS;
use r1cs::{
R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness,
};
use snark::RelaxedR1CSSNARKTrait;
use traits::{
AbsorbInROTrait, Group, HashFuncConstants, HashFuncConstantsCircuit, HashFuncConstantsTrait,
HashFuncTrait, StepCircuit,
circuit::StepCircuit, snark::RelaxedR1CSSNARKTrait, AbsorbInROTrait, Group, HashFuncConstants,
HashFuncConstantsCircuit, HashFuncConstantsTrait, HashFuncTrait,
};
/// A type that holds public parameters of Nova
@@ -665,32 +663,11 @@ mod tests {
type S1 = spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
type S2 = spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use ff::PrimeField;
use std::marker::PhantomData;
use traits::circuit::TrivialTestCircuit;
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Default)]
struct CubicCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
@@ -743,14 +720,7 @@ mod tests {
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::setup(
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
);
>::setup(TrivialTestCircuit::default(), TrivialTestCircuit::default());
let num_steps = 1;
@@ -758,12 +728,8 @@ mod tests {
let res = RecursiveSNARK::prove_step(
&pp,
None,
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
<G1 as Group>::Scalar::zero(),
<G2 as Group>::Scalar::zero(),
);
@@ -782,12 +748,8 @@ mod tests {
#[test]
fn test_ivc_nontrivial() {
let circuit_primary = TrivialTestCircuit {
_p: Default::default(),
};
let circuit_secondary = CubicCircuit {
_p: Default::default(),
};
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
@@ -852,10 +814,7 @@ mod tests {
assert_eq!(zn_primary, <G1 as Group>::Scalar::one());
let mut zn_secondary_direct = <G2 as Group>::Scalar::zero();
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit {
_p: Default::default(),
}
.compute(&zn_secondary_direct);
zn_secondary_direct = CubicCircuit::default().compute(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, <G2 as Group>::Scalar::from(2460515u64));
@@ -863,12 +822,8 @@ mod tests {
#[test]
fn test_ivc_nontrivial_with_compression() {
let circuit_primary = TrivialTestCircuit {
_p: Default::default(),
};
let circuit_secondary = CubicCircuit {
_p: Default::default(),
};
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
@@ -921,10 +876,7 @@ mod tests {
assert_eq!(zn_primary, <G1 as Group>::Scalar::one());
let mut zn_secondary_direct = <G2 as Group>::Scalar::zero();
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit {
_p: Default::default(),
}
.compute(&zn_secondary_direct);
zn_secondary_direct = CubicCircuit::default().compute(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, <G2 as Group>::Scalar::from(2460515u64));
@@ -1027,9 +979,7 @@ mod tests {
y: <G1 as Group>::Scalar::zero(),
};
let circuit_secondary = TrivialTestCircuit {
_p: Default::default(),
};
let circuit_secondary = TrivialTestCircuit::default();
// produce public parameters
let pp = PublicParams::<
@@ -1093,14 +1043,7 @@ mod tests {
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(
TrivialTestCircuit {
_p: Default::default(),
},
CubicCircuit {
_p: Default::default(),
},
);
>::setup(TrivialTestCircuit::default(), CubicCircuit::default());
let num_steps = 1;
@@ -1108,12 +1051,8 @@ mod tests {
let res = RecursiveSNARK::prove_step(
&pp,
None,
TrivialTestCircuit {
_p: Default::default(),
},
CubicCircuit {
_p: Default::default(),
},
TrivialTestCircuit::default(),
CubicCircuit::default(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
);

View File

@@ -8,7 +8,7 @@ use super::r1cs::{
R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness,
};
use super::traits::{AbsorbInROTrait, Group, HashFuncTrait};
use std::marker::PhantomData;
use core::marker::PhantomData;
/// A SNARK that holds the proof of a step of an incremental computation
#[allow(clippy::upper_case_acronyms)]

View File

@@ -8,8 +8,10 @@ use super::{
commitments::CommitGens,
errors::NovaError,
r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness},
snark::{ProverKeyTrait, RelaxedR1CSSNARKTrait, VerifierKeyTrait},
traits::{AppendToTranscriptTrait, ChallengeTrait, Group},
traits::{
snark::{ProverKeyTrait, RelaxedR1CSSNARKTrait, VerifierKeyTrait},
AppendToTranscriptTrait, ChallengeTrait, Group,
},
};
use core::cmp::max;
use ff::Field;

41
src/traits/circuit.rs Normal file
View File

@@ -0,0 +1,41 @@
//! This module defines traits that a step function must implement
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use ff::PrimeField;
/// A helper trait for a step of the incremental computation (i.e., circuit for F)
pub trait StepCircuit<F: PrimeField>: Send + Sync + Clone {
/// Sythesize the circuit for a computation step and return variable
/// that corresponds to the output of the step z_{i+1}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError>;
/// Execute the circuit for a computation step and return output
fn compute(&self, z: &F) -> F;
}
/// A trivial step circuit that simply returns the input
#[derive(Clone, Debug, Default)]
pub struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}

View File

@@ -175,20 +175,6 @@ impl<T, Rhs, Output> ScalarMul<Rhs, Output> for T where T: Mul<Rhs, Output = Out
pub trait ScalarMulOwned<Rhs, Output = Self>: for<'r> ScalarMul<&'r Rhs, Output> {}
impl<T, Rhs, Output> ScalarMulOwned<Rhs, Output> for T where T: for<'r> ScalarMul<&'r Rhs, Output> {}
/// A helper trait for a step of the incremental computation (i.e., circuit for F)
pub trait StepCircuit<F: PrimeField>: Send + Sync + Clone {
/// Sythesize the circuit for a computation step and return variable
/// that corresponds to the output of the step z_{i+1}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError>;
/// Execute the circuit for a computation step and return output
fn compute(&self, z: &F) -> F;
}
impl<F: PrimeField> AppendToTranscriptTrait for F {
fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) {
transcript.append_message(label, self.to_repr().as_ref());
@@ -202,3 +188,6 @@ impl<F: PrimeField> AppendToTranscriptTrait for [F] {
}
}
}
pub mod circuit;
pub mod snark;

View File

@@ -1,5 +1,5 @@
//! A collection of traits that define the behavior of a zkSNARK for RelaxedR1CS
use super::{
//! This module defines a collection of traits that define the behavior of a zkSNARK for RelaxedR1CS
use crate::{
errors::NovaError,
r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness},
traits::Group,