|
|
@ -12,7 +12,7 @@ use crate::{ |
|
|
|
evaluation::EvaluationEngineTrait, snark::RelaxedR1CSSNARKTrait, Group, TranscriptEngineTrait,
|
|
|
|
TranscriptReprTrait,
|
|
|
|
},
|
|
|
|
CommitmentKey,
|
|
|
|
Commitment, CommitmentKey,
|
|
|
|
};
|
|
|
|
use ff::Field;
|
|
|
|
use itertools::concat;
|
|
|
@ -21,8 +21,67 @@ use rayon::prelude::*; |
|
|
|
use serde::{Deserialize, Serialize};
|
|
|
|
use sumcheck::SumcheckProof;
|
|
|
|
|
|
|
|
/// A type that holds a witness to a polynomial evaluation instance
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub struct PolyEvalWitness<G: Group> {
|
|
|
|
p: Vec<G::Scalar>, // polynomial
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<G: Group> PolyEvalWitness<G> {
|
|
|
|
fn pad(W: &[PolyEvalWitness<G>]) -> Vec<PolyEvalWitness<G>> {
|
|
|
|
// determine the maximum size
|
|
|
|
if let Some(n) = W.iter().map(|w| w.p.len()).max() {
|
|
|
|
W.iter()
|
|
|
|
.map(|w| {
|
|
|
|
let mut p = w.p.clone();
|
|
|
|
p.resize(n, G::Scalar::zero());
|
|
|
|
PolyEvalWitness { p }
|
|
|
|
})
|
|
|
|
.collect()
|
|
|
|
} else {
|
|
|
|
Vec::new()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn weighted_sum(W: &[PolyEvalWitness<G>], s: &[G::Scalar]) -> PolyEvalWitness<G> {
|
|
|
|
assert_eq!(W.len(), s.len());
|
|
|
|
let mut p = vec![G::Scalar::zero(); W[0].p.len()];
|
|
|
|
for i in 0..W.len() {
|
|
|
|
for j in 0..W[i].p.len() {
|
|
|
|
p[j] += W[i].p[j] * s[i]
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PolyEvalWitness { p }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A type that holds a polynomial evaluation instance
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub struct PolyEvalInstance<G: Group> {
|
|
|
|
c: Commitment<G>, // commitment to the polynomial
|
|
|
|
x: Vec<G::Scalar>, // evaluation point
|
|
|
|
e: G::Scalar, // claimed evaluation
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<G: Group> PolyEvalInstance<G> {
|
|
|
|
fn pad(U: &[PolyEvalInstance<G>]) -> Vec<PolyEvalInstance<G>> {
|
|
|
|
// determine the maximum size
|
|
|
|
if let Some(ell) = U.iter().map(|u| u.x.len()).max() {
|
|
|
|
U.iter()
|
|
|
|
.map(|u| {
|
|
|
|
let mut x = vec![G::Scalar::zero(); ell - u.x.len()];
|
|
|
|
x.extend(u.x.clone());
|
|
|
|
PolyEvalInstance { c: u.c, x, e: u.e }
|
|
|
|
})
|
|
|
|
.collect()
|
|
|
|
} else {
|
|
|
|
Vec::new()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A trait that defines the behavior of a computation commitment engine
|
|
|
|
pub trait CompCommitmentEngineTrait<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
|
|
|
|
pub trait CompCommitmentEngineTrait<G: Group> {
|
|
|
|
/// A type that holds opening hint
|
|
|
|
type Decommitment: Clone + Send + Sync + Serialize + for<'de> Deserialize<'de>;
|
|
|
|
|
|
|
@ -46,22 +105,26 @@ pub trait CompCommitmentEngineTrait |
|
|
|
/// proves an evaluation of R1CS matrices viewed as polynomials
|
|
|
|
fn prove(
|
|
|
|
ck: &CommitmentKey<G>,
|
|
|
|
ek: &EE::ProverKey,
|
|
|
|
S: &R1CSShape<G>,
|
|
|
|
decomm: &Self::Decommitment,
|
|
|
|
comm: &Self::Commitment,
|
|
|
|
r: &(&[G::Scalar], &[G::Scalar]),
|
|
|
|
transcript: &mut G::TE,
|
|
|
|
) -> Result<Self::EvaluationArgument, NovaError>;
|
|
|
|
) -> Result<
|
|
|
|
(
|
|
|
|
Self::EvaluationArgument,
|
|
|
|
Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)>,
|
|
|
|
),
|
|
|
|
NovaError,
|
|
|
|
>;
|
|
|
|
|
|
|
|
/// verifies an evaluation of R1CS matrices viewed as polynomials and returns verified evaluations
|
|
|
|
fn verify(
|
|
|
|
vk: &EE::VerifierKey,
|
|
|
|
comm: &Self::Commitment,
|
|
|
|
r: &(&[G::Scalar], &[G::Scalar]),
|
|
|
|
arg: &Self::EvaluationArgument,
|
|
|
|
transcript: &mut G::TE,
|
|
|
|
) -> Result<(G::Scalar, G::Scalar, G::Scalar), NovaError>;
|
|
|
|
) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec<PolyEvalInstance<G>>), NovaError>;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A type that represents the prover's key
|
|
|
@ -70,7 +133,7 @@ pub trait CompCommitmentEngineTrait |
|
|
|
pub struct ProverKey<
|
|
|
|
G: Group,
|
|
|
|
EE: EvaluationEngineTrait<G, CE = G::CE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G, EE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G>,
|
|
|
|
> {
|
|
|
|
pk_ee: EE::ProverKey,
|
|
|
|
S: R1CSShape<G>,
|
|
|
@ -84,7 +147,7 @@ pub struct ProverKey< |
|
|
|
pub struct VerifierKey<
|
|
|
|
G: Group,
|
|
|
|
EE: EvaluationEngineTrait<G, CE = G::CE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G, EE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G>,
|
|
|
|
> {
|
|
|
|
num_cons: usize,
|
|
|
|
num_vars: usize,
|
|
|
@ -100,21 +163,20 @@ pub struct VerifierKey< |
|
|
|
pub struct RelaxedR1CSSNARK<
|
|
|
|
G: Group,
|
|
|
|
EE: EvaluationEngineTrait<G, CE = G::CE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G, EE>,
|
|
|
|
CC: CompCommitmentEngineTrait<G>,
|
|
|
|
> {
|
|
|
|
sc_proof_outer: SumcheckProof<G>,
|
|
|
|
claims_outer: (G::Scalar, G::Scalar, G::Scalar),
|
|
|
|
eval_E: G::Scalar,
|
|
|
|
sc_proof_inner: SumcheckProof<G>,
|
|
|
|
eval_W: G::Scalar,
|
|
|
|
eval_arg_cc: CC::EvaluationArgument,
|
|
|
|
sc_proof_batch: SumcheckProof<G>,
|
|
|
|
eval_E_prime: G::Scalar,
|
|
|
|
eval_W_prime: G::Scalar,
|
|
|
|
evals_batch: Vec<G::Scalar>,
|
|
|
|
eval_arg: EE::EvaluationArgument,
|
|
|
|
eval_arg_cc: CC::EvaluationArgument,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>, CC: CompCommitmentEngineTrait<G, EE>>
|
|
|
|
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>, CC: CompCommitmentEngineTrait<G>>
|
|
|
|
RelaxedR1CSSNARKTrait<G> for RelaxedR1CSSNARK<G, EE, CC>
|
|
|
|
{
|
|
|
|
type ProverKey = ProverKey<G, EE, CC>;
|
|
|
@ -292,9 +354,8 @@ impl, CC: CompCommitmentEngin |
|
|
|
)?;
|
|
|
|
|
|
|
|
// we now prove evaluations of R1CS matrices at (r_x, r_y)
|
|
|
|
let eval_arg_cc = CC::prove(
|
|
|
|
let (eval_arg_cc, mut w_u_vec) = CC::prove(
|
|
|
|
ck,
|
|
|
|
&pk.pk_ee,
|
|
|
|
&pk.S,
|
|
|
|
&pk.decomm,
|
|
|
|
&pk.comm,
|
|
|
@ -302,52 +363,111 @@ impl, CC: CompCommitmentEngin |
|
|
|
&mut transcript,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let eval_W = MultilinearPolynomial::new(W.W.clone()).evaluate(&r_y[1..]);
|
|
|
|
transcript.absorb(b"eval_W", &eval_W);
|
|
|
|
|
|
|
|
// We will now reduce eval_W =? W(r_y[1..]) and eval_W =? E(r_x) into
|
|
|
|
// add additional claims about W and E polynomials to the list from CC
|
|
|
|
let eval_W = MultilinearPolynomial::evaluate_with(&W.W, &r_y[1..]);
|
|
|
|
w_u_vec.push((
|
|
|
|
PolyEvalWitness { p: W.W.clone() },
|
|
|
|
PolyEvalInstance {
|
|
|
|
c: U.comm_W,
|
|
|
|
x: r_y[1..].to_vec(),
|
|
|
|
e: eval_W,
|
|
|
|
},
|
|
|
|
));
|
|
|
|
|
|
|
|
w_u_vec.push((
|
|
|
|
PolyEvalWitness { p: W.E },
|
|
|
|
PolyEvalInstance {
|
|
|
|
c: U.comm_E,
|
|
|
|
x: r_x,
|
|
|
|
e: eval_E,
|
|
|
|
},
|
|
|
|
));
|
|
|
|
|
|
|
|
// We will now reduce a vector of claims of evaluations at different points into claims about them at the same point.
|
|
|
|
// For example, eval_W =? W(r_y[1..]) and eval_W =? E(r_x) into
|
|
|
|
// two claims: eval_W_prime =? W(rz) and eval_E_prime =? E(rz)
|
|
|
|
// We can them combine the two into one: eval_W_prime + gamma * eval_E_prime =? (W + gamma*E)(rz),
|
|
|
|
// where gamma is a public challenge
|
|
|
|
// Since commitments to W and E are homomorphic, the verifier can compute a commitment
|
|
|
|
// to the batched polynomial.
|
|
|
|
let rho = transcript.squeeze(b"rho")?;
|
|
|
|
assert!(w_u_vec.len() >= 2);
|
|
|
|
|
|
|
|
let (w_vec, u_vec): (Vec<PolyEvalWitness<G>>, Vec<PolyEvalInstance<G>>) =
|
|
|
|
w_u_vec.into_iter().unzip();
|
|
|
|
let w_vec_padded = PolyEvalWitness::pad(&w_vec); // pad the polynomials to be of the same size
|
|
|
|
let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points
|
|
|
|
|
|
|
|
let powers = |s: &G::Scalar, n: usize| -> Vec<G::Scalar> {
|
|
|
|
assert!(n >= 1);
|
|
|
|
let mut powers = Vec::new();
|
|
|
|
powers.push(G::Scalar::one());
|
|
|
|
for i in 1..n {
|
|
|
|
powers.push(powers[i - 1] * s);
|
|
|
|
}
|
|
|
|
powers
|
|
|
|
};
|
|
|
|
|
|
|
|
let claim_batch_joint = eval_E + rho * eval_W;
|
|
|
|
let num_rounds_z = num_rounds_x;
|
|
|
|
let comb_func =
|
|
|
|
|poly_A_comp: &G::Scalar,
|
|
|
|
poly_B_comp: &G::Scalar,
|
|
|
|
poly_C_comp: &G::Scalar,
|
|
|
|
poly_D_comp: &G::Scalar|
|
|
|
|
-> G::Scalar { *poly_A_comp * *poly_B_comp + rho * *poly_C_comp * *poly_D_comp };
|
|
|
|
let (sc_proof_batch, r_z, claims_batch) = SumcheckProof::prove_quad_sum(
|
|
|
|
// generate a challenge
|
|
|
|
let rho = transcript.squeeze(b"r")?;
|
|
|
|
let num_claims = w_vec_padded.len();
|
|
|
|
let powers_of_rho = powers(&rho, num_claims);
|
|
|
|
let claim_batch_joint = u_vec_padded
|
|
|
|
.iter()
|
|
|
|
.zip(powers_of_rho.iter())
|
|
|
|
.map(|(u, p)| u.e * p)
|
|
|
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
|
|
|
|
|
|
let mut polys_left: Vec<MultilinearPolynomial<G::Scalar>> = w_vec_padded
|
|
|
|
.iter()
|
|
|
|
.map(|w| MultilinearPolynomial::new(w.p.clone()))
|
|
|
|
.collect();
|
|
|
|
let mut polys_right: Vec<MultilinearPolynomial<G::Scalar>> = u_vec_padded
|
|
|
|
.iter()
|
|
|
|
.map(|u| MultilinearPolynomial::new(EqPolynomial::new(u.x.clone()).evals()))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
let num_rounds_z = u_vec_padded[0].x.len();
|
|
|
|
let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar {
|
|
|
|
*poly_A_comp * *poly_B_comp
|
|
|
|
};
|
|
|
|
let (sc_proof_batch, r_z, claims_batch) = SumcheckProof::prove_quad_batch(
|
|
|
|
&claim_batch_joint,
|
|
|
|
num_rounds_z,
|
|
|
|
&mut MultilinearPolynomial::new(EqPolynomial::new(r_x.clone()).evals()),
|
|
|
|
&mut MultilinearPolynomial::new(W.E.clone()),
|
|
|
|
&mut MultilinearPolynomial::new(EqPolynomial::new(r_y[1..].to_vec()).evals()),
|
|
|
|
&mut MultilinearPolynomial::new(W.W.clone()),
|
|
|
|
&mut polys_left,
|
|
|
|
&mut polys_right,
|
|
|
|
&powers_of_rho,
|
|
|
|
comb_func,
|
|
|
|
&mut transcript,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let eval_E_prime = claims_batch[1];
|
|
|
|
let eval_W_prime = claims_batch[3];
|
|
|
|
transcript.absorb(b"claims_batch", &[eval_E_prime, eval_W_prime].as_slice());
|
|
|
|
let (claims_batch_left, _): (Vec<G::Scalar>, Vec<G::Scalar>) = claims_batch;
|
|
|
|
|
|
|
|
transcript.absorb(b"l", &claims_batch_left.as_slice());
|
|
|
|
|
|
|
|
// we now combine evaluation claims at the same point rz into one
|
|
|
|
let gamma = transcript.squeeze(b"gamma")?;
|
|
|
|
let comm = U.comm_E + U.comm_W * gamma;
|
|
|
|
let poly = W
|
|
|
|
.E
|
|
|
|
let gamma = transcript.squeeze(b"g")?;
|
|
|
|
let powers_of_gamma: Vec<G::Scalar> = powers(&gamma, num_claims);
|
|
|
|
let comm_joint = u_vec_padded
|
|
|
|
.iter()
|
|
|
|
.zip(powers_of_gamma.iter())
|
|
|
|
.map(|(u, g_i)| u.c * *g_i)
|
|
|
|
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
|
|
|
let poly_joint = PolyEvalWitness::weighted_sum(&w_vec_padded, &powers_of_gamma);
|
|
|
|
let eval_joint = claims_batch_left
|
|
|
|
.iter()
|
|
|
|
.zip(W.W.iter())
|
|
|
|
.map(|(e, w)| *e + gamma * w)
|
|
|
|
.collect::<Vec<G::Scalar>>();
|
|
|
|
let eval = eval_E_prime + gamma * eval_W_prime;
|
|
|
|
.zip(powers_of_gamma.iter())
|
|
|
|
.map(|(e, g_i)| *e * *g_i)
|
|
|
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
|
|
|
|
|
|
let eval_arg = EE::prove(ck, &pk.pk_ee, &mut transcript, &comm, &poly, &r_z, &eval)?;
|
|
|
|
let eval_arg = EE::prove(
|
|
|
|
ck,
|
|
|
|
&pk.pk_ee,
|
|
|
|
&mut transcript,
|
|
|
|
&comm_joint,
|
|
|
|
&poly_joint.p,
|
|
|
|
&r_z,
|
|
|
|
&eval_joint,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
Ok(RelaxedR1CSSNARK {
|
|
|
|
sc_proof_outer,
|
|
|
@ -355,11 +475,10 @@ impl, CC: CompCommitmentEngin |
|
|
|
eval_E,
|
|
|
|
sc_proof_inner,
|
|
|
|
eval_W,
|
|
|
|
eval_arg_cc,
|
|
|
|
sc_proof_batch,
|
|
|
|
eval_E_prime,
|
|
|
|
eval_W_prime,
|
|
|
|
evals_batch: claims_batch_left,
|
|
|
|
eval_arg,
|
|
|
|
eval_arg_cc,
|
|
|
|
})
|
|
|
|
}
|
|
|
|
|
|
|
@ -433,25 +552,50 @@ impl, CC: CompCommitmentEngin |
|
|
|
};
|
|
|
|
|
|
|
|
// verify evaluation argument to retrieve evaluations of R1CS matrices
|
|
|
|
let (eval_A, eval_B, eval_C) = CC::verify(
|
|
|
|
&vk.vk_ee,
|
|
|
|
&vk.comm,
|
|
|
|
&(&r_x, &r_y),
|
|
|
|
&self.eval_arg_cc,
|
|
|
|
&mut transcript,
|
|
|
|
)?;
|
|
|
|
let (eval_A, eval_B, eval_C, mut u_vec) =
|
|
|
|
CC::verify(&vk.comm, &(&r_x, &r_y), &self.eval_arg_cc, &mut transcript)?;
|
|
|
|
|
|
|
|
let claim_inner_final_expected = (eval_A + r * eval_B + r * r * eval_C) * eval_Z;
|
|
|
|
if claim_inner_final != claim_inner_final_expected {
|
|
|
|
return Err(NovaError::InvalidSumcheckProof);
|
|
|
|
}
|
|
|
|
|
|
|
|
// batch sum-check
|
|
|
|
transcript.absorb(b"eval_W", &self.eval_W);
|
|
|
|
// add additional claims about W and E polynomials to the list from CC
|
|
|
|
u_vec.push(PolyEvalInstance {
|
|
|
|
c: U.comm_W,
|
|
|
|
x: r_y[1..].to_vec(),
|
|
|
|
e: self.eval_W,
|
|
|
|
});
|
|
|
|
|
|
|
|
u_vec.push(PolyEvalInstance {
|
|
|
|
c: U.comm_E,
|
|
|
|
x: r_x,
|
|
|
|
e: self.eval_E,
|
|
|
|
});
|
|
|
|
|
|
|
|
let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points
|
|
|
|
|
|
|
|
let powers = |s: &G::Scalar, n: usize| -> Vec<G::Scalar> {
|
|
|
|
assert!(n >= 1);
|
|
|
|
let mut powers = Vec::new();
|
|
|
|
powers.push(G::Scalar::one());
|
|
|
|
for i in 1..n {
|
|
|
|
powers.push(powers[i - 1] * s);
|
|
|
|
}
|
|
|
|
powers
|
|
|
|
};
|
|
|
|
|
|
|
|
// generate a challenge
|
|
|
|
let rho = transcript.squeeze(b"r")?;
|
|
|
|
let num_claims = u_vec.len();
|
|
|
|
let powers_of_rho = powers(&rho, num_claims);
|
|
|
|
let claim_batch_joint = u_vec
|
|
|
|
.iter()
|
|
|
|
.zip(powers_of_rho.iter())
|
|
|
|
.map(|(u, p)| u.e * p)
|
|
|
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
|
|
|
|
|
|
let rho = transcript.squeeze(b"rho")?;
|
|
|
|
let claim_batch_joint = self.eval_E + rho * self.eval_W;
|
|
|
|
let num_rounds_z = num_rounds_x;
|
|
|
|
let num_rounds_z = u_vec_padded[0].x.len();
|
|
|
|
let (claim_batch_final, r_z) =
|
|
|
|
self
|
|
|
|
.sc_proof_batch
|
|
|
@ -459,32 +603,47 @@ impl, CC: CompCommitmentEngin |
|
|
|
|
|
|
|
let claim_batch_final_expected = {
|
|
|
|
let poly_rz = EqPolynomial::new(r_z.clone());
|
|
|
|
let rz_rx = poly_rz.evaluate(&r_x);
|
|
|
|
let rz_ry = poly_rz.evaluate(&r_y[1..]);
|
|
|
|
rz_rx * self.eval_E_prime + rho * rz_ry * self.eval_W_prime
|
|
|
|
let evals = u_vec_padded
|
|
|
|
.iter()
|
|
|
|
.map(|u| poly_rz.evaluate(&u.x))
|
|
|
|
.collect::<Vec<G::Scalar>>();
|
|
|
|
|
|
|
|
evals
|
|
|
|
.iter()
|
|
|
|
.zip(self.evals_batch.iter())
|
|
|
|
.zip(powers_of_rho.iter())
|
|
|
|
.map(|((e_i, p_i), rho_i)| *e_i * *p_i * rho_i)
|
|
|
|
.fold(G::Scalar::zero(), |acc, item| acc + item)
|
|
|
|
};
|
|
|
|
|
|
|
|
if claim_batch_final != claim_batch_final_expected {
|
|
|
|
return Err(NovaError::InvalidSumcheckProof);
|
|
|
|
}
|
|
|
|
|
|
|
|
transcript.absorb(
|
|
|
|
b"claims_batch",
|
|
|
|
&[self.eval_E_prime, self.eval_W_prime].as_slice(),
|
|
|
|
);
|
|
|
|
transcript.absorb(b"l", &self.evals_batch.as_slice());
|
|
|
|
|
|
|
|
// we now combine evaluation claims at the same point rz into one
|
|
|
|
let gamma = transcript.squeeze(b"gamma")?;
|
|
|
|
let comm = U.comm_E + U.comm_W * gamma;
|
|
|
|
let eval = self.eval_E_prime + gamma * self.eval_W_prime;
|
|
|
|
let gamma = transcript.squeeze(b"g")?;
|
|
|
|
let powers_of_gamma: Vec<G::Scalar> = powers(&gamma, num_claims);
|
|
|
|
let comm_joint = u_vec_padded
|
|
|
|
.iter()
|
|
|
|
.zip(powers_of_gamma.iter())
|
|
|
|
.map(|(u, g_i)| u.c * *g_i)
|
|
|
|
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
|
|
|
let eval_joint = self
|
|
|
|
.evals_batch
|
|
|
|
.iter()
|
|
|
|
.zip(powers_of_gamma.iter())
|
|
|
|
.map(|(e, g_i)| *e * *g_i)
|
|
|
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
|
|
|
|
|
|
// verify eval_W and eval_E
|
|
|
|
// verify
|
|
|
|
EE::verify(
|
|
|
|
&vk.vk_ee,
|
|
|
|
&mut transcript,
|
|
|
|
&comm,
|
|
|
|
&comm_joint,
|
|
|
|
&r_z,
|
|
|
|
&eval,
|
|
|
|
&eval_joint,
|
|
|
|
&self.eval_arg,
|
|
|
|
)?;
|
|
|
|
|
|
|
|