* ecdsa signature proof * use the library-provided default circuit * small reorg Co-authored-by: Srinath Setty <srinath@microsoft.com>main
@ -0,0 +1,317 @@ |
|||||
|
use bellperson::{
|
||||
|
gadgets::{boolean::AllocatedBit, num::AllocatedNum},
|
||||
|
ConstraintSystem, SynthesisError,
|
||||
|
};
|
||||
|
use ff::{PrimeField, PrimeFieldBits};
|
||||
|
use generic_array::typenum::U8;
|
||||
|
use neptune::{
|
||||
|
circuit::poseidon_hash,
|
||||
|
poseidon::{Poseidon, PoseidonConstants},
|
||||
|
};
|
||||
|
use nova_snark::{gadgets::ecc::AllocatedPoint, traits::circuit::StepCircuit};
|
||||
|
use subtle::Choice;
|
||||
|
|
||||
|
// An affine point coordinate that is on the curve.
|
||||
|
#[derive(Clone, Copy, Debug)]
|
||||
|
pub struct Coordinate<F>
|
||||
|
where
|
||||
|
F: PrimeField<Repr = [u8; 32]>,
|
||||
|
{
|
||||
|
pub x: F,
|
||||
|
pub y: F,
|
||||
|
pub is_infinity: bool,
|
||||
|
}
|
||||
|
|
||||
|
impl<F> Coordinate<F>
|
||||
|
where
|
||||
|
F: PrimeField<Repr = [u8; 32]>,
|
||||
|
{
|
||||
|
// New affine point coordiante on the curve so is_infinity = false.
|
||||
|
pub fn new(x: F, y: F) -> Self {
|
||||
|
Self {
|
||||
|
x,
|
||||
|
y,
|
||||
|
is_infinity: false,
|
||||
|
}
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
// An ECDSA signature
|
||||
|
#[derive(Clone, Debug)]
|
||||
|
pub struct EcdsaSignature<Fb, Fs>
|
||||
|
where
|
||||
|
Fb: PrimeField<Repr = [u8; 32]>,
|
||||
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
||||
|
{
|
||||
|
pk: Coordinate<Fb>, // public key
|
||||
|
r: Coordinate<Fb>, // (r, s) is the ECDSA signature
|
||||
|
s: Fs,
|
||||
|
c: Fs, // hash of the message
|
||||
|
g: Coordinate<Fb>, // generator of the group; could be omitted if Nova's traits allow accessing the generator
|
||||
|
}
|
||||
|
|
||||
|
impl<Fb, Fs> EcdsaSignature<Fb, Fs>
|
||||
|
where
|
||||
|
Fb: PrimeField<Repr = [u8; 32]>,
|
||||
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
||||
|
{
|
||||
|
pub fn new(pk: Coordinate<Fb>, r: Coordinate<Fb>, s: Fs, c: Fs, g: Coordinate<Fb>) -> Self {
|
||||
|
Self { pk, r, s, c, g }
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
// An ECDSA signature proof that we will use on the primary curve
|
||||
|
#[derive(Clone, Debug)]
|
||||
|
pub struct EcdsaCircuit<F>
|
||||
|
where
|
||||
|
F: PrimeField<Repr = [u8; 32]>,
|
||||
|
{
|
||||
|
pub z_r: Coordinate<F>,
|
||||
|
pub z_g: Coordinate<F>,
|
||||
|
pub z_pk: Coordinate<F>,
|
||||
|
pub z_c: F,
|
||||
|
pub z_s: F,
|
||||
|
pub r: Coordinate<F>,
|
||||
|
pub g: Coordinate<F>,
|
||||
|
pub pk: Coordinate<F>,
|
||||
|
pub c: F,
|
||||
|
pub s: F,
|
||||
|
pub c_bits: Vec<Choice>,
|
||||
|
pub s_bits: Vec<Choice>,
|
||||
|
pub pc: PoseidonConstants<F, U8>,
|
||||
|
}
|
||||
|
|
||||
|
impl<F> EcdsaCircuit<F>
|
||||
|
where
|
||||
|
F: PrimeField<Repr = [u8; 32]>,
|
||||
|
{
|
||||
|
// Creates a new [`EcdsaCircuit<Fb, Fs>`]. The base and scalar field elements from the curve
|
||||
|
// field used by the signature are converted to scalar field elements from the cyclic curve
|
||||
|
// field used by the circuit.
|
||||
|
pub fn new<Fb, Fs>(
|
||||
|
num_steps: usize,
|
||||
|
signatures: &[EcdsaSignature<Fb, Fs>],
|
||||
|
pc: &PoseidonConstants<F, U8>,
|
||||
|
) -> (F, Vec<Self>)
|
||||
|
where
|
||||
|
Fb: PrimeField<Repr = [u8; 32]>,
|
||||
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
||||
|
{
|
||||
|
let mut z0 = F::zero();
|
||||
|
let mut circuits = Vec::new();
|
||||
|
for i in 0..num_steps {
|
||||
|
let mut j = i;
|
||||
|
if i > 0 {
|
||||
|
j = i - 1
|
||||
|
};
|
||||
|
let z_signature = &signatures[j];
|
||||
|
let z_r = Coordinate::new(
|
||||
|
F::from_repr(z_signature.r.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(z_signature.r.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let z_g = Coordinate::new(
|
||||
|
F::from_repr(z_signature.g.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(z_signature.g.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let z_pk = Coordinate::new(
|
||||
|
F::from_repr(z_signature.pk.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(z_signature.pk.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let z_c = F::from_repr(z_signature.c.to_repr()).unwrap();
|
||||
|
let z_s = F::from_repr(z_signature.s.to_repr()).unwrap();
|
||||
|
|
||||
|
let signature = &signatures[i];
|
||||
|
let r = Coordinate::new(
|
||||
|
F::from_repr(signature.r.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(signature.r.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let g = Coordinate::new(
|
||||
|
F::from_repr(signature.g.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(signature.g.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let pk = Coordinate::new(
|
||||
|
F::from_repr(signature.pk.x.to_repr()).unwrap(),
|
||||
|
F::from_repr(signature.pk.y.to_repr()).unwrap(),
|
||||
|
);
|
||||
|
|
||||
|
let c_bits = Self::to_le_bits(&signature.c);
|
||||
|
let s_bits = Self::to_le_bits(&signature.s);
|
||||
|
let c = F::from_repr(signature.c.to_repr()).unwrap();
|
||||
|
let s = F::from_repr(signature.s.to_repr()).unwrap();
|
||||
|
|
||||
|
let circuit = EcdsaCircuit {
|
||||
|
z_r,
|
||||
|
z_g,
|
||||
|
z_pk,
|
||||
|
z_c,
|
||||
|
z_s,
|
||||
|
r,
|
||||
|
g,
|
||||
|
pk,
|
||||
|
c,
|
||||
|
s,
|
||||
|
c_bits,
|
||||
|
s_bits,
|
||||
|
pc: pc.clone(),
|
||||
|
};
|
||||
|
circuits.push(circuit);
|
||||
|
|
||||
|
if i == 0 {
|
||||
|
z0 =
|
||||
|
Poseidon::<F, U8>::new_with_preimage(&[r.x, r.y, g.x, g.y, pk.x, pk.y, c, s], pc).hash();
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
(z0, circuits)
|
||||
|
}
|
||||
|
|
||||
|
// Converts the scalar field element from the curve used by the signature to a bit represenation
|
||||
|
// for later use in scalar multiplication using the cyclic curve used by the circuit.
|
||||
|
fn to_le_bits<Fs>(fs: &Fs) -> Vec<Choice>
|
||||
|
where
|
||||
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
||||
|
{
|
||||
|
let bits = fs
|
||||
|
.to_repr()
|
||||
|
.iter()
|
||||
|
.flat_map(|byte| (0..8).map(move |i| Choice::from((byte >> i) & 1u8)))
|
||||
|
.collect::<Vec<Choice>>();
|
||||
|
bits
|
||||
|
}
|
||||
|
|
||||
|
// Synthesize a bit representation into circuit gadgets.
|
||||
|
fn synthesize_bits<CS: ConstraintSystem<F>>(
|
||||
|
cs: &mut CS,
|
||||
|
bits: &[Choice],
|
||||
|
) -> Result<Vec<AllocatedBit>, SynthesisError> {
|
||||
|
let alloc_bits: Vec<AllocatedBit> = bits
|
||||
|
.iter()
|
||||
|
.enumerate()
|
||||
|
.map(|(i, bit)| {
|
||||
|
AllocatedBit::alloc(
|
||||
|
cs.namespace(|| format!("bit {}", i)),
|
||||
|
Some(bit.unwrap_u8() == 1u8),
|
||||
|
)
|
||||
|
})
|
||||
|
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
|
||||
|
.unwrap();
|
||||
|
Ok(alloc_bits)
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
impl<F> StepCircuit<F> for EcdsaCircuit<F>
|
||||
|
where
|
||||
|
F: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
||||
|
{
|
||||
|
// Prove knowledge of the sk used to generate the Ecdsa signature (R,s)
|
||||
|
// with public key PK and message commitment c.
|
||||
|
// [s]G == R + [c]PK
|
||||
|
fn synthesize<CS: ConstraintSystem<F>>(
|
||||
|
&self,
|
||||
|
cs: &mut CS,
|
||||
|
z: AllocatedNum<F>,
|
||||
|
) -> Result<AllocatedNum<F>, SynthesisError> {
|
||||
|
let z_rx = AllocatedNum::alloc(cs.namespace(|| "z_rx"), || Ok(self.z_r.x))?;
|
||||
|
let z_ry = AllocatedNum::alloc(cs.namespace(|| "z_ry"), || Ok(self.z_r.y))?;
|
||||
|
let z_gx = AllocatedNum::alloc(cs.namespace(|| "z_gx"), || Ok(self.z_g.x))?;
|
||||
|
let z_gy = AllocatedNum::alloc(cs.namespace(|| "z_gy"), || Ok(self.z_g.y))?;
|
||||
|
let z_pkx = AllocatedNum::alloc(cs.namespace(|| "z_pkx"), || Ok(self.z_pk.x))?;
|
||||
|
let z_pky = AllocatedNum::alloc(cs.namespace(|| "z_pky"), || Ok(self.z_pk.y))?;
|
||||
|
let z_c = AllocatedNum::alloc(cs.namespace(|| "z_c"), || Ok(self.z_c))?;
|
||||
|
let z_s = AllocatedNum::alloc(cs.namespace(|| "z_s"), || Ok(self.z_s))?;
|
||||
|
|
||||
|
let z_hash = poseidon_hash(
|
||||
|
cs.namespace(|| "input hash"),
|
||||
|
vec![z_rx, z_ry, z_gx, z_gy, z_pkx, z_pky, z_c, z_s],
|
||||
|
&self.pc,
|
||||
|
)?;
|
||||
|
|
||||
|
cs.enforce(
|
||||
|
|| "z == z1",
|
||||
|
|lc| lc + z.get_variable(),
|
||||
|
|lc| lc + CS::one(),
|
||||
|
|lc| lc + z_hash.get_variable(),
|
||||
|
);
|
||||
|
|
||||
|
let g = AllocatedPoint::alloc(
|
||||
|
cs.namespace(|| "G"),
|
||||
|
Some((self.g.x, self.g.y, self.g.is_infinity)),
|
||||
|
)?;
|
||||
|
let s_bits = Self::synthesize_bits(&mut cs.namespace(|| "s_bits"), &self.s_bits)?;
|
||||
|
let sg = g.scalar_mul(cs.namespace(|| "[s]G"), s_bits)?;
|
||||
|
let r = AllocatedPoint::alloc(
|
||||
|
cs.namespace(|| "R"),
|
||||
|
Some((self.r.x, self.r.y, self.r.is_infinity)),
|
||||
|
)?;
|
||||
|
let c_bits = Self::synthesize_bits(&mut cs.namespace(|| "c_bits"), &self.c_bits)?;
|
||||
|
let pk = AllocatedPoint::alloc(
|
||||
|
cs.namespace(|| "PK"),
|
||||
|
Some((self.pk.x, self.pk.y, self.pk.is_infinity)),
|
||||
|
)?;
|
||||
|
let cpk = pk.scalar_mul(&mut cs.namespace(|| "[c]PK"), c_bits)?;
|
||||
|
let rcpk = cpk.add(&mut cs.namespace(|| "R + [c]PK"), &r)?;
|
||||
|
|
||||
|
let (rcpk_x, rcpk_y, _) = rcpk.get_coordinates();
|
||||
|
let (sg_x, sg_y, _) = sg.get_coordinates();
|
||||
|
|
||||
|
cs.enforce(
|
||||
|
|| "sg_x == rcpk_x",
|
||||
|
|lc| lc + sg_x.get_variable(),
|
||||
|
|lc| lc + CS::one(),
|
||||
|
|lc| lc + rcpk_x.get_variable(),
|
||||
|
);
|
||||
|
|
||||
|
cs.enforce(
|
||||
|
|| "sg_y == rcpk_y",
|
||||
|
|lc| lc + sg_y.get_variable(),
|
||||
|
|lc| lc + CS::one(),
|
||||
|
|lc| lc + rcpk_y.get_variable(),
|
||||
|
);
|
||||
|
|
||||
|
let rx = AllocatedNum::alloc(cs.namespace(|| "rx"), || Ok(self.r.x))?;
|
||||
|
let ry = AllocatedNum::alloc(cs.namespace(|| "ry"), || Ok(self.r.y))?;
|
||||
|
let gx = AllocatedNum::alloc(cs.namespace(|| "gx"), || Ok(self.g.x))?;
|
||||
|
let gy = AllocatedNum::alloc(cs.namespace(|| "gy"), || Ok(self.g.y))?;
|
||||
|
let pkx = AllocatedNum::alloc(cs.namespace(|| "pkx"), || Ok(self.pk.x))?;
|
||||
|
let pky = AllocatedNum::alloc(cs.namespace(|| "pky"), || Ok(self.pk.y))?;
|
||||
|
let c = AllocatedNum::alloc(cs.namespace(|| "c"), || Ok(self.c))?;
|
||||
|
let s = AllocatedNum::alloc(cs.namespace(|| "s"), || Ok(self.s))?;
|
||||
|
|
||||
|
poseidon_hash(
|
||||
|
cs.namespace(|| "output hash"),
|
||||
|
vec![rx, ry, gx, gy, pkx, pky, c, s],
|
||||
|
&self.pc,
|
||||
|
)
|
||||
|
}
|
||||
|
|
||||
|
fn compute(&self, z: &F) -> F {
|
||||
|
let z_hash = Poseidon::<F, U8>::new_with_preimage(
|
||||
|
&[
|
||||
|
self.z_r.x,
|
||||
|
self.z_r.y,
|
||||
|
self.z_g.x,
|
||||
|
self.z_g.y,
|
||||
|
self.z_pk.x,
|
||||
|
self.z_pk.y,
|
||||
|
self.z_c,
|
||||
|
self.z_s,
|
||||
|
],
|
||||
|
&self.pc,
|
||||
|
)
|
||||
|
.hash();
|
||||
|
debug_assert_eq!(z, &z_hash);
|
||||
|
|
||||
|
Poseidon::<F, U8>::new_with_preimage(
|
||||
|
&[
|
||||
|
self.r.x, self.r.y, self.g.x, self.g.y, self.pk.x, self.pk.y, self.c, self.s,
|
||||
|
],
|
||||
|
&self.pc,
|
||||
|
)
|
||||
|
.hash()
|
||||
|
}
|
||||
|
}
|
@ -0,0 +1,309 @@ |
|||||
|
//! Demonstrates how to use Nova to produce a recursive proof of an ECDSA signature.
|
||||
|
//! This example proves the knowledge of a sequence of ECDSA signatures with different public keys on different messages,
|
||||
|
//! but the example can be adapted to other settings (e.g., proving the validity of the certificate chain with a well-known root public key)
|
||||
|
//! Scheme borrowed from https://github.com/filecoin-project/bellperson-gadgets/blob/main/src/eddsa.rs
|
||||
|
//! Sign using G1 curve, and prove using G2 curve.
|
||||
|
|
||||
|
use core::ops::{Add, AddAssign, Mul, MulAssign, Neg};
|
||||
|
use ff::{
|
||||
|
derive::byteorder::{ByteOrder, LittleEndian},
|
||||
|
Field, PrimeField, PrimeFieldBits,
|
||||
|
};
|
||||
|
use generic_array::typenum::U8;
|
||||
|
use neptune::{poseidon::PoseidonConstants, Strength};
|
||||
|
use nova_snark::{
|
||||
|
traits::{circuit::TrivialTestCircuit, Group as Nova_Group},
|
||||
|
CompressedSNARK, PublicParams, RecursiveSNARK,
|
||||
|
};
|
||||
|
use num_bigint::BigUint;
|
||||
|
use pasta_curves::{
|
||||
|
arithmetic::CurveAffine,
|
||||
|
group::{Curve, Group},
|
||||
|
};
|
||||
|
use rand::{rngs::OsRng, RngCore};
|
||||
|
use sha3::{Digest, Sha3_512};
|
||||
|
use subtle::Choice;
|
||||
|
|
||||
|
mod circuit;
|
||||
|
mod utils;
|
||||
|
|
||||
|
use crate::circuit::{Coordinate, EcdsaCircuit, EcdsaSignature};
|
||||
|
use crate::utils::BitIterator;
|
||||
|
|
||||
|
type G1 = pasta_curves::pallas::Point;
|
||||
|
type G2 = pasta_curves::vesta::Point;
|
||||
|
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
|
||||
|
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
|
||||
|
|
||||
|
#[derive(Debug, Clone, Copy)]
|
||||
|
pub struct SecretKey(pub <G1 as Group>::Scalar);
|
||||
|
|
||||
|
impl SecretKey {
|
||||
|
pub fn random(mut rng: impl RngCore) -> Self {
|
||||
|
let secret = <G1 as Group>::Scalar::random(&mut rng);
|
||||
|
Self(secret)
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
#[derive(Debug, Clone, Copy)]
|
||||
|
pub struct PublicKey(pub G1);
|
||||
|
|
||||
|
impl PublicKey {
|
||||
|
pub fn from_secret_key(s: &SecretKey) -> Self {
|
||||
|
let point = G1::generator() * s.0;
|
||||
|
Self(point)
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
#[derive(Clone)]
|
||||
|
pub struct Signature {
|
||||
|
pub r: G1,
|
||||
|
pub s: <G1 as Group>::Scalar,
|
||||
|
}
|
||||
|
|
||||
|
impl SecretKey {
|
||||
|
pub fn sign(self, c: <G1 as Group>::Scalar, mut rng: impl RngCore) -> Signature {
|
||||
|
// T
|
||||
|
let mut t = [0u8; 80];
|
||||
|
rng.fill_bytes(&mut t[..]);
|
||||
|
|
||||
|
// h = H*(T || M)
|
||||
|
let h = Self::hash_to_scalar(b"Nova_Ecdsa_Hash", &t[..], &c.to_repr());
|
||||
|
|
||||
|
// R = [h]G
|
||||
|
let r = G1::generator().mul(h);
|
||||
|
|
||||
|
// s = h + c * sk
|
||||
|
let mut s = c;
|
||||
|
|
||||
|
s.mul_assign(&self.0);
|
||||
|
s.add_assign(&h);
|
||||
|
|
||||
|
Signature { r, s }
|
||||
|
}
|
||||
|
|
||||
|
fn mul_bits<B: AsRef<[u64]>>(
|
||||
|
s: &<G1 as Group>::Scalar,
|
||||
|
bits: BitIterator<B>,
|
||||
|
) -> <G1 as Group>::Scalar {
|
||||
|
let mut x = <G1 as Group>::Scalar::zero();
|
||||
|
for bit in bits {
|
||||
|
x.double();
|
||||
|
|
||||
|
if bit {
|
||||
|
x.add_assign(s)
|
||||
|
}
|
||||
|
}
|
||||
|
x
|
||||
|
}
|
||||
|
|
||||
|
fn to_uniform(digest: &[u8]) -> <G1 as Group>::Scalar {
|
||||
|
assert_eq!(digest.len(), 64);
|
||||
|
let mut bits: [u64; 8] = [0; 8];
|
||||
|
LittleEndian::read_u64_into(digest, &mut bits);
|
||||
|
Self::mul_bits(&<G1 as Group>::Scalar::one(), BitIterator::new(bits))
|
||||
|
}
|
||||
|
|
||||
|
pub fn to_uniform_32(digest: &[u8]) -> <G1 as Group>::Scalar {
|
||||
|
assert_eq!(digest.len(), 32);
|
||||
|
let mut bits: [u64; 4] = [0; 4];
|
||||
|
LittleEndian::read_u64_into(digest, &mut bits);
|
||||
|
Self::mul_bits(&<G1 as Group>::Scalar::one(), BitIterator::new(bits))
|
||||
|
}
|
||||
|
|
||||
|
pub fn hash_to_scalar(persona: &[u8], a: &[u8], b: &[u8]) -> <G1 as Group>::Scalar {
|
||||
|
let mut hasher = Sha3_512::new();
|
||||
|
hasher.input(persona);
|
||||
|
hasher.input(a);
|
||||
|
hasher.input(b);
|
||||
|
let digest = hasher.result();
|
||||
|
Self::to_uniform(digest.as_ref())
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
impl PublicKey {
|
||||
|
pub fn verify(&self, c: <G1 as Group>::Scalar, signature: &Signature) -> bool {
|
||||
|
let modulus = Self::modulus_as_scalar();
|
||||
|
let order_check_pk = self.0.mul(modulus);
|
||||
|
if !order_check_pk.eq(&G1::identity()) {
|
||||
|
return false;
|
||||
|
}
|
||||
|
|
||||
|
let order_check_r = signature.r.mul(modulus);
|
||||
|
if !order_check_r.eq(&G1::identity()) {
|
||||
|
return false;
|
||||
|
}
|
||||
|
|
||||
|
// 0 = [-s]G + R + [c]PK
|
||||
|
self
|
||||
|
.0
|
||||
|
.mul(c)
|
||||
|
.add(&signature.r)
|
||||
|
.add(G1::generator().mul(signature.s).neg())
|
||||
|
.eq(&G1::identity())
|
||||
|
}
|
||||
|
|
||||
|
fn modulus_as_scalar() -> <G1 as Group>::Scalar {
|
||||
|
let mut bits = <G1 as Group>::Scalar::char_le_bits().to_bitvec();
|
||||
|
let mut acc = BigUint::new(Vec::<u32>::new());
|
||||
|
while let Some(b) = bits.pop() {
|
||||
|
acc <<= 1_i32;
|
||||
|
acc += b as u8;
|
||||
|
}
|
||||
|
let modulus = acc.to_str_radix(10);
|
||||
|
<G1 as Group>::Scalar::from_str_vartime(&modulus).unwrap()
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
fn main() {
|
||||
|
// In a VERY LIMITED case of messages known to be unique due to application level
|
||||
|
// and being less than the group order when interpreted as integer, one can sign
|
||||
|
// the message directly without hashing
|
||||
|
pub const MAX_MESSAGE_LEN: usize = 16;
|
||||
|
assert!(MAX_MESSAGE_LEN * 8 <= <G1 as Group>::Scalar::CAPACITY as usize);
|
||||
|
|
||||
|
// produce public parameters
|
||||
|
println!("Generating public parameters...");
|
||||
|
|
||||
|
let pc = PoseidonConstants::<<G2 as Group>::Scalar, U8>::new_with_strength(Strength::Standard);
|
||||
|
let circuit_primary = EcdsaCircuit::<<G2 as Nova_Group>::Scalar> {
|
||||
|
z_r: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
z_g: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
z_pk: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
z_c: <G2 as Nova_Group>::Scalar::zero(),
|
||||
|
z_s: <G2 as Nova_Group>::Scalar::zero(),
|
||||
|
r: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
g: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
pk: Coordinate::new(
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
<G2 as Nova_Group>::Scalar::zero(),
|
||||
|
),
|
||||
|
c: <G2 as Nova_Group>::Scalar::zero(),
|
||||
|
s: <G2 as Nova_Group>::Scalar::zero(),
|
||||
|
c_bits: vec![Choice::from(0u8); 256],
|
||||
|
s_bits: vec![Choice::from(0u8); 256],
|
||||
|
pc: pc.clone(),
|
||||
|
};
|
||||
|
|
||||
|
let circuit_secondary = TrivialTestCircuit::default();
|
||||
|
|
||||
|
let pp = PublicParams::<
|
||||
|
G2,
|
||||
|
G1,
|
||||
|
EcdsaCircuit<<G2 as Group>::Scalar>,
|
||||
|
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
|
>::setup(circuit_primary, circuit_secondary.clone());
|
||||
|
|
||||
|
// produce non-deterministic advice
|
||||
|
println!("Generating non-deterministic advice...");
|
||||
|
|
||||
|
let num_steps = 3;
|
||||
|
|
||||
|
let signatures = || {
|
||||
|
let mut signatures = Vec::new();
|
||||
|
for i in 0..num_steps {
|
||||
|
let sk = SecretKey::random(&mut OsRng);
|
||||
|
let pk = PublicKey::from_secret_key(&sk);
|
||||
|
|
||||
|
let message = format!("MESSAGE{}", i).as_bytes().to_owned();
|
||||
|
assert!(message.len() <= MAX_MESSAGE_LEN);
|
||||
|
|
||||
|
let mut digest: Vec<u8> = message.to_vec();
|
||||
|
for _ in 0..(32 - message.len() as u32) {
|
||||
|
digest.extend(&[0u8; 1]);
|
||||
|
}
|
||||
|
|
||||
|
let c = SecretKey::to_uniform_32(digest.as_ref());
|
||||
|
|
||||
|
let signature_primary = sk.sign(c, &mut OsRng);
|
||||
|
let result = pk.verify(c, &signature_primary);
|
||||
|
assert!(result);
|
||||
|
|
||||
|
// Affine coordinates guaranteed to be on the curve
|
||||
|
let rxy = signature_primary.r.to_affine().coordinates().unwrap();
|
||||
|
let gxy = G1::generator().to_affine().coordinates().unwrap();
|
||||
|
let pkxy = pk.0.to_affine().coordinates().unwrap();
|
||||
|
|
||||
|
let s = signature_primary.s;
|
||||
|
|
||||
|
signatures.push(EcdsaSignature::<
|
||||
|
<G1 as Nova_Group>::Base,
|
||||
|
<G1 as Nova_Group>::Scalar,
|
||||
|
>::new(
|
||||
|
Coordinate::<<G1 as Nova_Group>::Base>::new(*pkxy.x(), *pkxy.y()),
|
||||
|
Coordinate::<<G1 as Nova_Group>::Base>::new(*rxy.x(), *rxy.y()),
|
||||
|
s,
|
||||
|
c,
|
||||
|
Coordinate::<<G1 as Nova_Group>::Base>::new(*gxy.x(), *gxy.y()),
|
||||
|
));
|
||||
|
}
|
||||
|
signatures
|
||||
|
};
|
||||
|
|
||||
|
let (z0_primary, circuits_primary) = EcdsaCircuit::<<G2 as Nova_Group>::Scalar>::new::<
|
||||
|
<G1 as Nova_Group>::Base,
|
||||
|
<G1 as Nova_Group>::Scalar,
|
||||
|
>(num_steps, &signatures(), &pc);
|
||||
|
|
||||
|
// Secondary circuit
|
||||
|
let z0_secondary = <G1 as Group>::Scalar::zero();
|
||||
|
|
||||
|
// produce a recursive SNARK
|
||||
|
println!("Generating a RecursiveSNARK...");
|
||||
|
|
||||
|
type C1 = EcdsaCircuit<<G2 as Nova_Group>::Scalar>;
|
||||
|
type C2 = TrivialTestCircuit<<G1 as Nova_Group>::Scalar>;
|
||||
|
|
||||
|
let mut recursive_snark: Option<RecursiveSNARK<G2, G1, C1, C2>> = None;
|
||||
|
|
||||
|
for (i, circuit_primary) in circuits_primary.iter().take(num_steps).enumerate() {
|
||||
|
let result = RecursiveSNARK::prove_step(
|
||||
|
&pp,
|
||||
|
recursive_snark,
|
||||
|
circuit_primary.clone(),
|
||||
|
circuit_secondary.clone(),
|
||||
|
z0_primary,
|
||||
|
z0_secondary,
|
||||
|
);
|
||||
|
assert!(result.is_ok());
|
||||
|
println!("RecursiveSNARK::prove_step {}: {:?}", i, result.is_ok());
|
||||
|
recursive_snark = Some(result.unwrap());
|
||||
|
}
|
||||
|
|
||||
|
assert!(recursive_snark.is_some());
|
||||
|
let recursive_snark = recursive_snark.unwrap();
|
||||
|
|
||||
|
// verify the recursive SNARK
|
||||
|
println!("Verifying the RecursiveSNARK...");
|
||||
|
let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
||||
|
println!("RecursiveSNARK::verify: {:?}", res.is_ok());
|
||||
|
assert!(res.is_ok());
|
||||
|
|
||||
|
// produce a compressed SNARK
|
||||
|
println!("Generating a CompressedSNARK...");
|
||||
|
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
|
||||
|
println!("CompressedSNARK::prove: {:?}", res.is_ok());
|
||||
|
assert!(res.is_ok());
|
||||
|
let compressed_snark = res.unwrap();
|
||||
|
|
||||
|
// verify the compressed SNARK
|
||||
|
println!("Verifying a CompressedSNARK...");
|
||||
|
let res = compressed_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
||||
|
println!("CompressedSNARK::verify: {:?}", res.is_ok());
|
||||
|
assert!(res.is_ok());
|
||||
|
}
|
@ -0,0 +1,29 @@ |
|||||
|
#[derive(Debug)]
|
||||
|
pub struct BitIterator<E> {
|
||||
|
t: E,
|
||||
|
n: usize,
|
||||
|
}
|
||||
|
|
||||
|
impl<E: AsRef<[u64]>> BitIterator<E> {
|
||||
|
pub fn new(t: E) -> Self {
|
||||
|
let n = t.as_ref().len() * 64;
|
||||
|
|
||||
|
BitIterator { t, n }
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
impl<E: AsRef<[u64]>> Iterator for BitIterator<E> {
|
||||
|
type Item = bool;
|
||||
|
|
||||
|
fn next(&mut self) -> Option<bool> {
|
||||
|
if self.n == 0 {
|
||||
|
None
|
||||
|
} else {
|
||||
|
self.n -= 1;
|
||||
|
let part = self.n / 64;
|
||||
|
let bit = self.n - (64 * part);
|
||||
|
|
||||
|
Some(self.t.as_ref()[part] & (1 << bit) > 0)
|
||||
|
}
|
||||
|
}
|
||||
|
}
|