You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

742 lines
18 KiB

  1. package arbo
  2. import (
  3. "bytes"
  4. "fmt"
  5. "math"
  6. "runtime"
  7. "sort"
  8. "sync"
  9. "github.com/iden3/go-merkletree/db"
  10. )
  11. /*
  12. AddBatch design
  13. ===============
  14. CASE A: Empty Tree --> if tree is empty (root==0)
  15. =================================================
  16. - Build the full tree from bottom to top (from all the leaf to the root)
  17. CASE B: ALMOST CASE A, Almost empty Tree --> if Tree has numLeafs < minLeafsThreshold
  18. ==============================================================================
  19. - Get the Leafs (key & value) (iterate the tree from the current root getting
  20. the leafs)
  21. - Create a new empty Tree
  22. - Do CASE A for the new Tree, giving the already existing key&values (leafs)
  23. from the original Tree + the new key&values to be added from the AddBatch call
  24. R R
  25. / \ / \
  26. A * / \
  27. / \ / \
  28. B C * *
  29. / | / \
  30. / | / \
  31. / | / \
  32. L: A B G D
  33. / \
  34. / \
  35. / \
  36. C *
  37. / \
  38. / \
  39. / \
  40. ... ... (nLeafs < minLeafsThreshold)
  41. CASE C: ALMOST CASE B --> if Tree has few Leafs (but numLeafs>=minLeafsThreshold)
  42. ==============================================================================
  43. - Use A, B, G, F as Roots of subtrees
  44. - Do CASE B for each subtree
  45. - Then go from L to the Root
  46. R
  47. / \
  48. / \
  49. / \
  50. * *
  51. / | / \
  52. / | / \
  53. / | / \
  54. L: A B G D
  55. / \
  56. / \
  57. / \
  58. C *
  59. / \
  60. / \
  61. / \
  62. ... ... (nLeafs >= minLeafsThreshold)
  63. CASE D: Already populated Tree
  64. ==============================
  65. - Use A, B, C, D as subtree
  66. - Sort the Keys in Buckets that share the initial part of the path
  67. - For each subtree add there the new leafs
  68. R
  69. / \
  70. / \
  71. / \
  72. * *
  73. / | / \
  74. / | / \
  75. / | / \
  76. L: A B C D
  77. /\ /\ / \ / \
  78. ... ... ... ... ... ...
  79. CASE E: Already populated Tree Unbalanced
  80. =========================================
  81. - Need to fill M1 and M2, and then will be able to use CASE D
  82. - Search for M1 & M2 in the inputed Keys
  83. - Add M1 & M2 to the Tree
  84. - From here can use CASE D
  85. R
  86. / \
  87. / \
  88. / \
  89. * *
  90. | \
  91. | \
  92. | \
  93. L: M1 * M2 * (where M1 and M2 are empty)
  94. / | /
  95. / | /
  96. / | /
  97. A * *
  98. / \ | \
  99. / \ | \
  100. / \ | \
  101. B * * C
  102. / \ |\
  103. ... ... | \
  104. | \
  105. D E
  106. Algorithm decision
  107. ==================
  108. - if nLeafs==0 (root==0): CASE A
  109. - if nLeafs<minLeafsThreshold: CASE B
  110. - if nLeafs>=minLeafsThreshold && (nLeafs/nBuckets) < minLeafsThreshold: CASE C
  111. - else: CASE D & CASE E
  112. - Multiple tree.Add calls: O(n log n)
  113. - Used in: cases A, B, C
  114. - Tree from bottom to top: O(log n)
  115. - Used in: cases D, E
  116. */
  117. const (
  118. minLeafsThreshold = 100 // nolint:gomnd // TMP WIP this will be autocalculated
  119. )
  120. // AddBatchOpt is the WIP implementation of the AddBatch method in a more
  121. // optimized approach.
  122. func (t *Tree) AddBatchOpt(keys, values [][]byte) ([]int, error) {
  123. t.updateAccessTime()
  124. t.Lock()
  125. defer t.Unlock()
  126. // when len(keyvalues) is not a power of 2, cut at the biggest power of
  127. // 2 under the len(keys), add those 2**n key-values using the AddBatch
  128. // approach, and then add the remaining key-values using tree.Add.
  129. kvs, err := t.keysValuesToKvs(keys, values)
  130. if err != nil {
  131. return nil, err
  132. }
  133. t.tx, err = t.db.NewTx()
  134. if err != nil {
  135. return nil, err
  136. }
  137. // if nCPU is not a power of two, cut at the highest power of two under
  138. // nCPU
  139. nCPU := highestPowerOfTwo(runtime.NumCPU())
  140. l := int(math.Log2(float64(nCPU)))
  141. var invalids []int
  142. // CASE A: if nLeafs==0 (root==0)
  143. if bytes.Equal(t.root, t.emptyHash) {
  144. invalids, err = t.caseA(nCPU, kvs)
  145. if err != nil {
  146. return nil, err
  147. }
  148. if err = t.finalizeAddBatch(); err != nil {
  149. return nil, err
  150. }
  151. return invalids, nil
  152. }
  153. // CASE B: if nLeafs<nBuckets
  154. nLeafs, err := t.GetNLeafs()
  155. if err != nil {
  156. return nil, err
  157. }
  158. if nLeafs < minLeafsThreshold { // CASE B
  159. var excedents []kv
  160. invalids, excedents, err = t.caseB(nCPU, 0, kvs)
  161. if err != nil {
  162. return nil, err
  163. }
  164. // add the excedents
  165. for i := 0; i < len(excedents); i++ {
  166. err = t.add(0, excedents[i].k, excedents[i].v)
  167. if err != nil {
  168. invalids = append(invalids, excedents[i].pos)
  169. }
  170. }
  171. if err = t.finalizeAddBatch(); err != nil {
  172. return nil, err
  173. }
  174. return invalids, nil
  175. }
  176. keysAtL, err := t.getKeysAtLevel(l + 1)
  177. if err != nil {
  178. return nil, err
  179. }
  180. // CASE C: if nLeafs>=minLeafsThreshold && (nLeafs/nBuckets) < minLeafsThreshold
  181. // available parallelization, will need to be a power of 2 (2**n)
  182. if nLeafs >= minLeafsThreshold &&
  183. (nLeafs/nCPU) < minLeafsThreshold &&
  184. len(keysAtL) == nCPU {
  185. invalids, err = t.caseC(nCPU, l, keysAtL, kvs)
  186. if err != nil {
  187. return nil, err
  188. }
  189. if err = t.finalizeAddBatch(); err != nil {
  190. return nil, err
  191. }
  192. return invalids, nil
  193. }
  194. // CASE E
  195. if len(keysAtL) != nCPU {
  196. // CASE E: add one key at each bucket, and then do CASE D
  197. buckets := splitInBuckets(kvs, nCPU)
  198. kvs = []kv{}
  199. for i := 0; i < len(buckets); i++ {
  200. // add one leaf of the bucket, if there is an error when
  201. // adding the k-v, try to add the next one of the bucket
  202. // (until one is added)
  203. var inserted int
  204. for j := 0; j < len(buckets[i]); j++ {
  205. if err := t.add(0, buckets[i][j].k, buckets[i][j].v); err == nil {
  206. inserted = j
  207. break
  208. }
  209. }
  210. // put the buckets elements except the inserted one
  211. kvs = append(kvs, buckets[i][:inserted]...)
  212. kvs = append(kvs, buckets[i][inserted+1:]...)
  213. }
  214. keysAtL, err = t.getKeysAtLevel(l + 1)
  215. if err != nil {
  216. return nil, err
  217. }
  218. }
  219. // CASE D
  220. if len(keysAtL) == nCPU { // enter in CASE D if len(keysAtL)=nCPU, if not, CASE E
  221. invalidsCaseD, err := t.caseD(nCPU, l, keysAtL, kvs)
  222. if err != nil {
  223. return nil, err
  224. }
  225. invalids = append(invalids, invalidsCaseD...)
  226. if err = t.finalizeAddBatch(); err != nil {
  227. return nil, err
  228. }
  229. return invalids, nil
  230. }
  231. // TODO update NLeafs from DB
  232. return nil, fmt.Errorf("UNIMPLEMENTED")
  233. }
  234. func (t *Tree) finalizeAddBatch() error {
  235. // store root to db
  236. if err := t.tx.Put(dbKeyRoot, t.root); err != nil {
  237. return err
  238. }
  239. // commit db tx
  240. if err := t.tx.Commit(); err != nil {
  241. return err
  242. }
  243. return nil
  244. }
  245. func (t *Tree) caseA(nCPU int, kvs []kv) ([]int, error) {
  246. // if len(kvs) is not a power of 2, cut at the bigger power
  247. // of two under len(kvs), build the tree with that, and add
  248. // later the excedents
  249. kvsP2, kvsNonP2 := cutPowerOfTwo(kvs)
  250. invalids, err := t.buildTreeBottomUp(nCPU, kvsP2)
  251. if err != nil {
  252. return nil, err
  253. }
  254. for i := 0; i < len(kvsNonP2); i++ {
  255. if err = t.add(0, kvsNonP2[i].k, kvsNonP2[i].v); err != nil {
  256. invalids = append(invalids, kvsNonP2[i].pos)
  257. }
  258. }
  259. return invalids, nil
  260. }
  261. func (t *Tree) caseB(nCPU, l int, kvs []kv) ([]int, []kv, error) {
  262. // get already existing keys
  263. aKs, aVs, err := t.getLeafs(t.root)
  264. if err != nil {
  265. return nil, nil, err
  266. }
  267. aKvs, err := t.keysValuesToKvs(aKs, aVs)
  268. if err != nil {
  269. return nil, nil, err
  270. }
  271. // add already existing key-values to the inputted key-values
  272. kvs = append(kvs, aKvs...)
  273. // proceed with CASE A
  274. sortKvs(kvs)
  275. // cutPowerOfTwo, the excedent add it as normal Tree.Add
  276. kvsP2, kvsNonP2 := cutPowerOfTwo(kvs)
  277. var invalids []int
  278. if nCPU > 1 {
  279. invalids, err = t.buildTreeBottomUp(nCPU, kvsP2)
  280. if err != nil {
  281. return nil, nil, err
  282. }
  283. } else {
  284. invalids, err = t.buildTreeBottomUpSingleThread(kvsP2)
  285. if err != nil {
  286. return nil, nil, err
  287. }
  288. }
  289. // return the excedents which will be added at the full tree at the end
  290. return invalids, kvsNonP2, nil
  291. }
  292. func (t *Tree) caseC(nCPU, l int, keysAtL [][]byte, kvs []kv) ([]int, error) {
  293. // 1. go down until level L (L=log2(nBuckets)): keysAtL
  294. var excedents []kv
  295. buckets := splitInBuckets(kvs, nCPU)
  296. // 2. use keys at level L as roots of the subtrees under each one
  297. excedentsInBucket := make([][]kv, nCPU)
  298. subRoots := make([][]byte, nCPU)
  299. txs := make([]db.Tx, nCPU)
  300. var wg sync.WaitGroup
  301. wg.Add(nCPU)
  302. for i := 0; i < nCPU; i++ {
  303. go func(cpu int) {
  304. var err error
  305. txs[cpu], err = t.db.NewTx()
  306. if err != nil {
  307. panic(err) // TODO WIP
  308. }
  309. bucketTree := Tree{tx: txs[cpu], db: t.db, maxLevels: t.maxLevels,
  310. hashFunction: t.hashFunction, root: keysAtL[cpu]}
  311. // 3. do CASE B (with 1 cpu) for each key at level L
  312. _, bucketExcedents, err := bucketTree.caseB(1, l, buckets[cpu])
  313. if err != nil {
  314. panic(err)
  315. // return nil, err
  316. }
  317. excedentsInBucket[cpu] = bucketExcedents
  318. subRoots[cpu] = bucketTree.root
  319. wg.Done()
  320. }(i)
  321. }
  322. wg.Wait()
  323. // merge buckets txs into Tree.tx
  324. for i := 0; i < len(txs); i++ {
  325. if err := t.tx.Add(txs[i]); err != nil {
  326. return nil, err
  327. }
  328. }
  329. for i := 0; i < len(excedentsInBucket); i++ {
  330. excedents = append(excedents, excedentsInBucket[i]...)
  331. }
  332. // 4. go upFromKeys from the new roots of the subtrees
  333. newRoot, err := t.upFromKeys(subRoots)
  334. if err != nil {
  335. return nil, err
  336. }
  337. t.root = newRoot
  338. // add the key-values that have not been used yet
  339. var invalids []int
  340. for i := 0; i < len(excedents); i++ {
  341. // Add until the level L
  342. if err = t.add(0, excedents[i].k, excedents[i].v); err != nil {
  343. invalids = append(invalids, excedents[i].pos) // TODO WIP
  344. }
  345. }
  346. return invalids, nil
  347. }
  348. func (t *Tree) caseD(nCPU, l int, keysAtL [][]byte, kvs []kv) ([]int, error) {
  349. if nCPU == 1 { // CASE D, but with 1 cpu
  350. var invalids []int
  351. for i := 0; i < len(kvs); i++ {
  352. if err := t.add(0, kvs[i].k, kvs[i].v); err != nil {
  353. invalids = append(invalids, kvs[i].pos)
  354. }
  355. }
  356. return invalids, nil
  357. }
  358. buckets := splitInBuckets(kvs, nCPU)
  359. subRoots := make([][]byte, nCPU)
  360. invalidsInBucket := make([][]int, nCPU)
  361. txs := make([]db.Tx, nCPU)
  362. var wg sync.WaitGroup
  363. wg.Add(nCPU)
  364. for i := 0; i < nCPU; i++ {
  365. go func(cpu int) {
  366. var err error
  367. txs[cpu], err = t.db.NewTx()
  368. if err != nil {
  369. panic(err) // TODO WIP
  370. }
  371. // put already existing tx into txs[cpu], as txs[cpu]
  372. // needs the pending key-values that are not in tree.db,
  373. // but are in tree.tx
  374. if err := txs[cpu].Add(t.tx); err != nil {
  375. panic(err) // TODO WIP
  376. }
  377. bucketTree := Tree{tx: txs[cpu], db: t.db, maxLevels: t.maxLevels - l,
  378. hashFunction: t.hashFunction, root: keysAtL[cpu]}
  379. for j := 0; j < len(buckets[cpu]); j++ {
  380. if err = bucketTree.add(l, buckets[cpu][j].k, buckets[cpu][j].v); err != nil {
  381. invalidsInBucket[cpu] = append(invalidsInBucket[cpu], buckets[cpu][j].pos)
  382. }
  383. }
  384. subRoots[cpu] = bucketTree.root
  385. wg.Done()
  386. }(i)
  387. }
  388. wg.Wait()
  389. // merge buckets txs into Tree.tx
  390. for i := 0; i < len(txs); i++ {
  391. if err := t.tx.Add(txs[i]); err != nil {
  392. return nil, err
  393. }
  394. }
  395. newRoot, err := t.upFromKeys(subRoots)
  396. if err != nil {
  397. return nil, err
  398. }
  399. t.root = newRoot
  400. var invalids []int
  401. for i := 0; i < len(invalidsInBucket); i++ {
  402. invalids = append(invalids, invalidsInBucket[i]...)
  403. }
  404. return invalids, nil
  405. }
  406. func splitInBuckets(kvs []kv, nBuckets int) [][]kv {
  407. buckets := make([][]kv, nBuckets)
  408. // 1. classify the keyvalues into buckets
  409. for i := 0; i < len(kvs); i++ {
  410. pair := kvs[i]
  411. // bucketnum := keyToBucket(pair.k, nBuckets)
  412. bucketnum := keyToBucket(pair.keyPath, nBuckets)
  413. buckets[bucketnum] = append(buckets[bucketnum], pair)
  414. }
  415. return buckets
  416. }
  417. // TODO rename in a more 'real' name (calculate bucket from/for key)
  418. func keyToBucket(k []byte, nBuckets int) int {
  419. nLevels := int(math.Log2(float64(nBuckets)))
  420. b := make([]int, nBuckets)
  421. for i := 0; i < nBuckets; i++ {
  422. b[i] = i
  423. }
  424. r := b
  425. mid := len(r) / 2 //nolint:gomnd
  426. for i := 0; i < nLevels; i++ {
  427. if int(k[i/8]&(1<<(i%8))) != 0 {
  428. r = r[mid:]
  429. mid = len(r) / 2 //nolint:gomnd
  430. } else {
  431. r = r[:mid]
  432. mid = len(r) / 2 //nolint:gomnd
  433. }
  434. }
  435. return r[0]
  436. }
  437. type kv struct {
  438. pos int // original position in the array
  439. keyPath []byte
  440. k []byte
  441. v []byte
  442. }
  443. // compareBytes compares byte slices where the bytes are compared from left to
  444. // right and each byte is compared by bit from right to left
  445. func compareBytes(a, b []byte) bool {
  446. // WIP
  447. for i := 0; i < len(a); i++ {
  448. for j := 0; j < 8; j++ {
  449. aBit := a[i] & (1 << j)
  450. bBit := b[i] & (1 << j)
  451. if aBit > bBit {
  452. return false
  453. } else if aBit < bBit {
  454. return true
  455. }
  456. }
  457. }
  458. return false
  459. }
  460. // sortKvs sorts the kv by path
  461. func sortKvs(kvs []kv) {
  462. sort.Slice(kvs, func(i, j int) bool {
  463. return compareBytes(kvs[i].keyPath, kvs[j].keyPath)
  464. })
  465. }
  466. func (t *Tree) keysValuesToKvs(ks, vs [][]byte) ([]kv, error) {
  467. if len(ks) != len(vs) {
  468. return nil, fmt.Errorf("len(keys)!=len(values) (%d!=%d)",
  469. len(ks), len(vs))
  470. }
  471. kvs := make([]kv, len(ks))
  472. for i := 0; i < len(ks); i++ {
  473. keyPath := make([]byte, t.hashFunction.Len())
  474. copy(keyPath[:], ks[i])
  475. kvs[i].pos = i
  476. kvs[i].keyPath = ks[i]
  477. kvs[i].k = ks[i]
  478. kvs[i].v = vs[i]
  479. }
  480. return kvs, nil
  481. }
  482. /*
  483. func (t *Tree) kvsToKeysValues(kvs []kv) ([][]byte, [][]byte) {
  484. ks := make([][]byte, len(kvs))
  485. vs := make([][]byte, len(kvs))
  486. for i := 0; i < len(kvs); i++ {
  487. ks[i] = kvs[i].k
  488. vs[i] = kvs[i].v
  489. }
  490. return ks, vs
  491. }
  492. */
  493. // buildTreeBottomUp splits the key-values into n Buckets (where n is the number
  494. // of CPUs), in parallel builds a subtree for each bucket, once all the subtrees
  495. // are built, uses the subtrees roots as keys for a new tree, which as result
  496. // will have the complete Tree build from bottom to up, where until the
  497. // log2(nCPU) level it has been computed in parallel.
  498. func (t *Tree) buildTreeBottomUp(nCPU int, kvs []kv) ([]int, error) {
  499. buckets := splitInBuckets(kvs, nCPU)
  500. subRoots := make([][]byte, nCPU)
  501. invalidsInBucket := make([][]int, nCPU)
  502. txs := make([]db.Tx, nCPU)
  503. var wg sync.WaitGroup
  504. wg.Add(nCPU)
  505. for i := 0; i < nCPU; i++ {
  506. go func(cpu int) {
  507. sortKvs(buckets[cpu])
  508. var err error
  509. txs[cpu], err = t.db.NewTx()
  510. if err != nil {
  511. panic(err) // TODO
  512. }
  513. bucketTree := Tree{tx: txs[cpu], db: t.db, maxLevels: t.maxLevels,
  514. hashFunction: t.hashFunction, root: t.emptyHash}
  515. currInvalids, err := bucketTree.buildTreeBottomUpSingleThread(buckets[cpu])
  516. if err != nil {
  517. panic(err) // TODO
  518. }
  519. invalidsInBucket[cpu] = currInvalids
  520. subRoots[cpu] = bucketTree.root
  521. wg.Done()
  522. }(i)
  523. }
  524. wg.Wait()
  525. // merge buckets txs into Tree.tx
  526. for i := 0; i < len(txs); i++ {
  527. if err := t.tx.Add(txs[i]); err != nil {
  528. return nil, err
  529. }
  530. }
  531. newRoot, err := t.upFromKeys(subRoots)
  532. if err != nil {
  533. return nil, err
  534. }
  535. t.root = newRoot
  536. var invalids []int
  537. for i := 0; i < len(invalidsInBucket); i++ {
  538. invalids = append(invalids, invalidsInBucket[i]...)
  539. }
  540. return invalids, err
  541. }
  542. // buildTreeBottomUpSingleThread builds the tree with the given []kv from bottom
  543. // to the root. keys & values must be sorted by path, and the array ks must be
  544. // length multiple of 2
  545. func (t *Tree) buildTreeBottomUpSingleThread(kvs []kv) ([]int, error) {
  546. // TODO check that log2(len(leafs)) < t.maxLevels, if not, maxLevels
  547. // would be reached and should return error
  548. var invalids []int
  549. // build the leafs
  550. leafKeys := make([][]byte, len(kvs))
  551. for i := 0; i < len(kvs); i++ {
  552. // TODO handle the case where Key&Value == 0
  553. leafKey, leafValue, err := newLeafValue(t.hashFunction, kvs[i].k, kvs[i].v)
  554. if err != nil {
  555. // return nil, err
  556. invalids = append(invalids, kvs[i].pos)
  557. }
  558. // store leafKey & leafValue to db
  559. if err := t.tx.Put(leafKey, leafValue); err != nil {
  560. // return nil, err
  561. invalids = append(invalids, kvs[i].pos)
  562. }
  563. leafKeys[i] = leafKey
  564. }
  565. r, err := t.upFromKeys(leafKeys)
  566. if err != nil {
  567. return invalids, err
  568. }
  569. t.root = r
  570. return invalids, nil
  571. }
  572. // keys & values must be sorted by path, and the array ks must be length
  573. // multiple of 2
  574. func (t *Tree) upFromKeys(ks [][]byte) ([]byte, error) {
  575. if len(ks) == 1 {
  576. return ks[0], nil
  577. }
  578. var rKs [][]byte
  579. for i := 0; i < len(ks); i += 2 {
  580. // TODO handle the case where Key&Value == 0
  581. k, v, err := newIntermediate(t.hashFunction, ks[i], ks[i+1])
  582. if err != nil {
  583. return nil, err
  584. }
  585. // store k-v to db
  586. if err = t.tx.Put(k, v); err != nil {
  587. return nil, err
  588. }
  589. rKs = append(rKs, k)
  590. }
  591. return t.upFromKeys(rKs)
  592. }
  593. func (t *Tree) getLeafs(root []byte) ([][]byte, [][]byte, error) {
  594. var ks, vs [][]byte
  595. err := t.iter(root, func(k, v []byte) {
  596. if v[0] != PrefixValueLeaf {
  597. return
  598. }
  599. leafK, leafV := readLeafValue(v)
  600. ks = append(ks, leafK)
  601. vs = append(vs, leafV)
  602. })
  603. return ks, vs, err
  604. }
  605. func (t *Tree) getKeysAtLevel(l int) ([][]byte, error) {
  606. var keys [][]byte
  607. err := t.iterWithStop(t.root, 0, func(currLvl int, k, v []byte) bool {
  608. if currLvl == l && !bytes.Equal(k, t.emptyHash) {
  609. keys = append(keys, k)
  610. }
  611. if currLvl >= l {
  612. return true // to stop the iter from going down
  613. }
  614. return false
  615. })
  616. return keys, err
  617. }
  618. // cutPowerOfTwo returns []kv of length that is a power of 2, and a second []kv
  619. // with the extra elements that don't fit in a power of 2 length
  620. func cutPowerOfTwo(kvs []kv) ([]kv, []kv) {
  621. x := len(kvs)
  622. if (x & (x - 1)) != 0 {
  623. p2 := highestPowerOfTwo(x)
  624. return kvs[:p2], kvs[p2:]
  625. }
  626. return kvs, nil
  627. }
  628. func highestPowerOfTwo(n int) int {
  629. res := 0
  630. for i := n; i >= 1; i-- {
  631. if (i & (i - 1)) == 0 {
  632. res = i
  633. break
  634. }
  635. }
  636. return res
  637. }
  638. // func computeSimpleAddCost(nLeafs int) int {
  639. // // nLvls 2^nLvls
  640. // nLvls := int(math.Log2(float64(nLeafs)))
  641. // return nLvls * int(math.Pow(2, float64(nLvls)))
  642. // }
  643. //
  644. // func computeBottomUpAddCost(nLeafs int) int {
  645. // // 2^nLvls * 2 - 1
  646. // nLvls := int(math.Log2(float64(nLeafs)))
  647. // return (int(math.Pow(2, float64(nLvls))) * 2) - 1
  648. // }